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PREFACE

Image representation and processing is one of the most important and exciting research
areas in computer science, and is the subject of much research in many countries. Some
problems of image restoration have been solved; different techniques of image data
coding and compression have been worked out; systems and devices of binary, greyscale,
and color image processing are in operation, and the first image data bases have been
implemented.

Nevertheless, irrespective of their success, the capabilities of computers for visual
information analysis are negligible compared with human capabilities. A computer may
be compared to a blind person feeling with the tip of a stick things in front of him. The
main characteristic of human vision is an adequate perception of the surrounding reality,
and the ability to recognize and identify objects in various situations and positions. It is
Jjust this that a machine is unable to do. Though we speak of "machine perception” of the
surrounding world, in reality only a primitive remembering of input data, and not
perception takes place: an element-by-element analysis, and not understanding. Because
of this, computers perform more as a means of convenient and powerful representation of
image data than for their comprehension, and the human brain remains the "processor”
and the device for decision making.

The development of computers as a means of increasing the efficiency, quality and
capacity of human activity is an example of the evolutionary way of the development of
any instrument. A revolutionary step might be the development of a true "machine mind",
which is impossible without its perception of the surrounding world.

In our opinion, some of the reasons for the present impasse are insufficient aftention to
the interrelations of image data structuring in a computer, the peculiarities of human
perception, and the problem orientation of image processing.

It has become clear, for instance, that the efforts to create special processors for fast
two-dimensional transforms have not resulted in any qualitative leap in solving the
problems of image analysis, because a rather narrow class of images is adequate for a
two-dimensional stationary field. By inertia, the task of image analysis has often been
replaced by exercises in the fast calculation of approximating coefficients of series such
as Fourier, Hadamar, Haar, etc., whilst overlooking the fact that the computer is first and
foremost an apparatus for analytical conversions.

After the appearance of powerful processors having large volumes of fast memory,
another problem has arisen: the structure of image data flow being input into a computer
is converted into a data structure effective for either storage (compression, coding) or fast
conversions and processing, but not for both simultaneously. This duality has resulted in
computer development which parallels either computational operations which are
effective only for tasks of numerical processing, or access to the memory being effective
for arranging of storage and data retrieval (for example, in data bases).

From our point of view, the representation dnd processing of images should be
realized as a single process combining two main functions: the parallel control of storage
and computations. Therefore, the main content of this book is an investigation of new
structural forms of visual information which enables combining memory and computa-
tional control. Such structures are being analyzed which, on the one hand, satisfy the
specific characteristics of human perception and, on the other hand, are natural for a
deterministic device such as a computer.

It should be noted that though the book title contains the terms "representation and
processing of images"”, its contents, the first third, at least, is to be understood more
widely, i.e. the study of regular hierarchical structures for the representation of informa-
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tion fields of different types; scalar, vector, etc. Such structures, named as pyramids,
quad- and oct-trees, etc., are widely used now in image processing and computer
graphics. These have attracted particular attention following the works of T. Pavlidis, S.
Tanimoto, C. Dyer, H. Samet, and other scientists, published at the end of the 70s and the
early 80s.

We have approached these structures from another side — through the investigation of
self-similarity and space-filling curves which have provided a natural way of ordering the
structure elements. We would like to express our thanks to Prof. J.-C. Simon, University
. Paris VI, for his attention to our work at the beginning of the 80s and for fruitful discus-
sions in Leningrad and Paris.

We thank V. A. Anisimov for his contributions to the text: he participated in the
writing of Section 6.2. We also express our gratitude to G.V. Yepifanov for discussions
during the process of manuscript preparation and S.N. Mysko for help in computer
experiments.
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Chapter 1
INTRODUCTION

For a long time, the basic concepts of image processing were traditionally connected
with spectral methods. Any difficulties which arose in the solution of practical
problems were considered to be caused by equipment and hardware: low memory
volume, low power, the absence of special equipment needed for processing
holograms (in the case of optical processing), etc. Computer facilities are now
highly developed, making it apparently possible to design special hardware that will
evidently help to produce artificial systems able to perceive images. However, this
problem is not yet solved, and still remains important and difficult. It is necessary
to seek new approaches and methods for image processing which will .make it
possible to produce artificial systems having perception abilities comparable with
those of a human being. The main purpose of this book is to describe the
development of the certain new concepts and methods of image representation and
processing, relating to the appearance based on “recursiveness”, a new set of ideas,
techniques and technologies.

The basic terminology of digital image processing is supposed to be familiar to
our reader, as well as the basic methods employed, as described, for instance, in
the works {23, 102, 106, 148 ].

1.1 Human and Machine Perception

The most important tasks of computer image analysis are not yet realized in image
processing devices. One can understand this situation if we compare the human and
machine ways of visual information perception. Let us consider the transformation
of image data which takes place when an image is perceived by the eye and
transferred to the human memory. This would then enable us possibly to apply in
artificial systems some basic principles of human image perception.
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It is believed that there are three main forms of image data involved in the
process of human perception [105]: (1) image data received by the retina of the
eye; (2) problem-oriented signal-features transferred by the optic nerve from the
eye to the brain; (3) a responding signal, which is formed in the human brain and
used in decision making.

In the first stage of perception (1), external light energy causes certain
changes in the sensitive elements of the retina (excites them). The data flow is
limited in this step because the number of sensitive elements is finite, and their
resolution is limited. The same is true for artificial systems, and thus human and
artificial perception have much in common in this stage.

The second stage (2) corresponds to signals and features which are transferred
to the visual department of the brain. In this stage, human and artificial ways of
perception are radically different. In artificial systems, image data are completely
and accurately transmitted from the sensors to the memory, thus requiring
powerful data transmitting systems and a large memory. In the natural (human)
system, the rate of signal transmission is rather low in this step. This appears to be
a few hundred bits per second, although the human eye receives about 109 bits of
information per second, and the carrying capacity of the eye-brain transmitting
channel is very high.

The main feature of human perception in this stage is the high compression of
data transmitted from the eye to the memory. Such compression does not usually
take place in existing artificial image processing systems. What makes it possible to
compress the transmitted data to such a great extent? We consider that such
compression is possible because the human visual system, consisting of the eyes
and brain, adjusts itself so that, at every given moment, it is not a universal system
but a problem-oriented one. This phenomenon has very much in common with
language communication, where of all the words we know we choose a limited
thesaurus needed for a certain situation.

A large number of works about visual illusions exist, and new kinds of illusions
are being discovered [62]. Illusions indicate that the mechanism of adjustment
really exists in human image perception. The example shown in Fig. 1.1 shows how
the illusion causes us to believe that equal circles are of a different size because the
straight lines in the picture make us consider the figure to be three- dimensional.
Other examples: when we walk in darkness, we may take a bush growing near the
road for a hiding stranger; we may recognize certain objects among randomly
arranged spots of paint - all this depends upon the subject to which our image
analyzer is currently tuned [86]. This tuning ability of human vision decreases
greatly the number of situations Whichs"éan be considered to be different in a
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particular context, resulting in the amount of data needed for image analysis to be

minimized.

Fig. 1.1. In a context of converging lines, equal circles are perceived differently.

Compression of data is achieved by means of an active adaptation of vision to
current conditions and a feedback between the brain and the sensors. The eye
adjusts itself according to the current light intensity, contrast, distance, situation
and orientation of an object — all these features are reduced to a certain set of
invariants, which are much smaller, than all the possible combinations of these
features. This kind of adaptation may be called an integral adaptation.

The feedback enables also a local adaptation - when a certain complex image is
perceived in a special way: attention is concentrated on salient features, instead of
being spread uniformly across the whole picture. This is the so-called “analytical
perception procedure”, when the primary features of an image are extracted first,
then the secondary features, being more complete, are perceived, united and
generalized, and, finally, the objects are isolated and recognized. The image data
transmitted to the brain become, therefore, not simply compressed, but
hierarchically structured. This way of receiving information from the environment
can be called induction, because it employs the analysis of particular features
(empirical data) in order to lead to a general description.

All these means are used to help to identify objects (situations) observed, thus
making it possible to pass to the third stage of perception (3), when the
information is admitted by the brain. The information is perceived when the objects
observed correspond to known prototvpes, according to which a way of behavior is
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already known to the perceiver. The third stage of perception is the step from a
“pictorial” representation of the image to an abstract model, which describes an
object or a situation (Fig. 1.2a), and identifying it in the human brain. Possibly,
the identification process involves deduction. Hierarchically, the structured
description obtained as a result of the analytical perception procedure is then
analyzed level by level, in order to find a relation to some model which already
exists in the brain. If some features of the new description differ from those of the
existing model they are isolated in order to describe, remember and generalize
them.

outside signals signals brain cognition internal
world to sensors to brain processes wor ld

'
' ' :
information perception decision making

fie1d' field field

b)

D e e

representation analysis

Fig. 1.2. Perception schemes: (a) - by a human, (b) - by a computer.

However, there is another mode of perception, which differs from that
described above. It is called simultaneous, or synthetic, recognition with the object
observed being perceived at once as a single integral pattern (an example is the
recognition of a familiar face). Physiological data show that with synthetic
perception there is no time for the analytic procedure, and recognition takes place
unconsciously, as a conditional reflex. Hence, it is based on other principles of
image data organization or structuring. This mechanism has not been investigated
enough and no satisfactory models exist. Much more likely, both analytical and
synthetic perception are involved and take place in parallel, supplementing each
other, with the former being more oriented to the teaching process, and the latter to

INTRODUCTION 5

the recognition process. Together, they sequentially form the process of associative
reaction of the eye-brain system in interaction with the environment.

Thus, three ways of image data representation correspond to three levels of
human perception: representation on the retina, reduced representation in the
visual department of the cortex and decisions-identifiers associated with
precedents - representation in the memory. The same levels and means of data
representation may be form the basis of constructing a model of an artificial image
data perception system (Fig. 1.2b). The input part of the system is the information
field corresponding to the retina and representing the input flow of image data.
Some informative part of the input data flow required for the solution of a particular
problem is entered into the perception field (computer memory). The processing of
an image represented in the memory should lead to the identification of an image or
individual objects which finally is reduced to the process of decision making.

Let us consider the correspondence of image analysis processes in biological
and technical systems which are constructed according to Fig. 1.2. The excitation of
sensitive elements and the integral adaptation of the eye may be easily modelled in
a technical system. At the same time, the feedback between the brain and the eye
conditioning an active local adaptation and problem orientation (feedback at Fig.
1.2a) is not usually present in the technical system, because of-a data
representation technique which does not allow correction by analysis algorithms.
Due to this, a large part of the biological mechanisms of data flow reduction is
omitted in the technical system and only a few of them remain at the designer’s
disposal (for example, the accounting of apriori data about the class of the
problems to be solved or images to be processed).

Hence, the first significant difference between the biological system and the
technical one becomes evident even at the stage when the initial data enters the
analyzer: the data received are considerably modified and their initial volume is
strongly reduced in the former system, whereas the reduction mechanism (f this
exists at all) is preset beforehand and remains constant in the latter system. The
absence of fast rearrangeability limits the system’s capability. Thus, an important
task is the development of new approaches to the organization of a computer
perception field which takes into account the biblogical mechanisms of vision and
data compression.
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1.2. Representation of an Information
Field

The perception field of a technical system is that inner representation of data with
which the work proceeds. The importance of its correct organization is explained
first of all by the following. The complexity and efficiency of image processing
algorithms and the range of problems potentially solved just depend on the
organization of this structure. This is the result of the above mentioned feedback
violation between the algorithms of analysis and the representation algorithms.

The efficiency of problem solving, i.e. the rate of analysis and decision
making, and the suitability of the result for the user, greatly depends on the mode
of data organization in the computer’s memory. Successfully chosen internal data
representation makes possible the reduction of information transferred and stored
in the system, and the elimination of time-consuming operations of data
transformation from one form into another.

For this reason, a choice of the logical and physical structure of the perception
field is required, which would consider the specific character of the problem to be
solved, as well as make it easier to realize (simulate) the “human” perception
procedures, and also to find a structure adequate to the algorithms used and the
physical organization (architecture) of the system.

Actually, the structure of the perception fields is determined by the
transformations the image data are subject to in the information field. Let us
identify three types of transformations (or types of interrelation) of these fields.

(1) The full perception is characterized by either the information field being
used as the inner information representation or by its transformation which allows
to reconstruct simply the initial field. Thus, all the information received is
introduced into the system. The main task of the technical systems of full
perception is, as a rule, the facsimile transmission of the information field or its
storage and reproduction without any distortion. One can conclude that the total
volume of input data is to be analyzed only in the case when it is not known
beforehand which part of these data is sufficient in order to obtain the information
making possible the solution of the problem.

Historically, it was the systems of full perception which appeared first; this
emphasises the desire of researchers to enter into the system as much data as
possible in the hope of realising a more complete and more qualitative analysis.
However, the expediency of this approach is not yet proved. We consider those
systems which are more natural (and more similar to human vision) are
problem-oriented systems or systems oriented to a given class of objects perceived.
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(2) In the case of problem-oriented perception it is not a one-to-one but a
many-to-one mapping of the information field in the perception field which is
involved. It may be said that the information analyzed by this system is a kind of
reduced copy of the data received. Examples of reduced internal image
representations in systems of this type are a contour image, a limited set of
coefficients of a two-dimensional transform, etc.

The basis for the choice of a particular perception field organization should be
the range of problems the system is designed to tackle. For instance, it is sufficient
to perceive binary, but not greyscale, images for optical character recognition; a
contour image of the scene observed is often adequate for an industrial vision
system, while a rough representation of a given template with low resolution is
successfully used for searching in an image database. The versatility of the human
eye is due to its ability to accommodate itself promptly to an enormous range of
different conditions and perception tasks. The versatility of a problem-oriented
perception system is the larger the greater is the number of tasks the chosen data
structure corresponds to. The use of a rearranged perception field (from outside or
automatically) promises to enlarge the system capabilities, with the system
becoming adaptive in this case.

(3) Reflex perception is characterized by preliminarily specifying the
procedure of the information field transformation into a set of distinctive features.
The number of these features is small compared with the volume of the information
field. In fact, further work is carried out in the space of the attributed features with
the use of pattern recognition techniques. For instance, to identify an image of a
geometric figure, only a small number of characteristics, such as the pattern area
and perimeter, the number of its angles, etc., can be used. Systems with such a type
of perception can be naturally called specialized, as it is just the particular problem
which determines the mode of feature extraction used for decision making. It is this
type of system which is most widely used at present. They are, in practice, not
rearrangeable and are developed especially for solving a particular problem.

Summarizing, it can be noted that it is the search for data structures for
problem-oriented perception systems that is the*actual (and difficult) task, as, in
full perception systems, this structure is completely determined by the information
field itself, and in reflex perception systems - by the problem to be solved .

Many authors have given attention to the importance of studying and
searching for new forms of image representation as the fundamental basis for
determining achievable results and possible treatments [23, 84, 119, 142].
Conforming to digital image processing, image data representation is actually the
data structure (logic or physical) on which processing algorithms are based and
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with which hardware or software components of the image processing system
interact.

One of the commonly used forms of image data representation in a computer is
a two-dimensional matrix of samples, each element of which - the pixel - describes
the brightness, or color, of an image element having particular coordinates. The
main advantage of such a matrix representation is in preserving the structure of the
image processed on a logical (and often physical) level of data representation in a
computer, i.e. the spatial organization of brightness and color elements. In this
context, the matrix representation is also called the direct representation [102,
119 ]. The simplicity of this representation enables to easily organize access to, and
the processing of, pixels, both sequentially and in parallel. The most often used
operation with images presented as matrices of pixels is the row by row scanning of
an image and the local processing of each pixel neighborhood; for instance,
convolution with a certain nucleus in the vicinity of a 3x3 or 5x5 matrix, edge
detection, determination of the local brightness gradient, etc.

Various special image processors have been developed based on matrix
representation, such as vector, matrix, and pipeline processors [47, 61]. At the
same time, many authors (see [37, 43, 140], for example) have indicated the
difficulties of image processing with direct representation. First of all, they result
from the rather high expenditures for determining global characteristics, and
generalized descriptions of the images processed. Local operations in the pixel
vicinity are convenient for the extraction of primary features and for performing
operations of pre-processing (noise elimination, local brightness and contrast
correction, etc.), but they are not sufficient for image analysis, object identification
and recognition. For these tasks, it is necessary to use another type of
representation, for example, the description of images using a set of features
obtained in the process of performing local operations .

Another approach widely used for image data representation in the computer is
an image description using the coefficients of certain (usually orthogonal
two-dimensional) transforms, for instance, Fourier, Hadamar, Karhunen-Loev,
etc. Instead of brightness samples, coefficients of a brightness function
decomposition over a certain basis are stored in the memory in this case. Each
spectral coefficient of this kind is an integral image characteristic; it characterizes
the whole region of the brightness function determination.

Integral coefficients provide an easy way of accomplishing global operations on
images, such as filtration, restoration, distortion correction, and so on [102, 106,
1481. The coefficients of two-dimensional transforms are used as generalized
features of images, characterizing them as a whole. They are applied, for instance,
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in the case of texture analysis, and recognition of certain image classes. As the
spectra of the majority of real images are strongly inhomogeneous, the coefficients
of two-dimensional transforms are successfully used for coding and compression of
image data [41, 148,152].

At the same time, local operations on an image or its separate parts become
difficult if pictorial data are represented by two-dimensional transforms. In many
cases, it makes the solution of simple image analysis problems impossible. Global
features derived from spectral coefficients adequately characterize those images
which can be considered as stationary signals (textures, for example) but are often
not suitable for the processing and analysis of other classes of images characterized
by local variability, such as real scenes with multiple objects.

Some technological obstacles associated with the hardware required for
realizing fast two-dimensional transforms for large volumes of input data arise. As
a result, in real systems two-dimensional transforms are often made not for the
whole image, but separately for non-overlapping fragments or for separate parts of
the image [47, 61, 102]. Though this helps in solving some of the problems
encountered, it still often reduces the advantages of global operations with images.

Syntactic image representation methods (also known as structuralland/ or
linguistic methods) [23, 48, 102] describe the images of composite objects as
hierarchies of more simple subpatterns and employ the apparatus of formal
grammars. Special objects in computer graphics and computer aided design systems
are often represented in this way. The advantage of syntactic representation is
image description in terms of wholly semantically-meaningful units, which agree
well with the particularities of human perception. This representation being
developed is in close conformity with the so-called “conceptual hierarchy” or
“symbolic” (opposite to “iconic”) description of an image, the realisation of which
is one of the main purposes of image analysis and computer vision [108 ].

Within the framework of syntactic representation, linguistic and structural
approaches may be identified [48, 106]. In the first case, a composite object
(image) is described on the basis of a featured set of non-derivative elements
(alphabet) together with rules of their combination (laws of “words” and “phrases”
construction). For example, a character image can be described as a combination of
line segments of differing form and length. In the second case, features describing
different classes of objects are formed on the set of non-derivative elements, but the
syntax of the image description language is not defined (as in the first case).

However, any approach is faced with problems concerning the choice and
extraction of non-derivative elements. As a rule, an adequate set can be devised
only for a sufficiently narrow class of images (or class of objects on them); it is
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difficult to find a “semantically complete” basis of non-derivative elements or
features which make it possible to describe or to recognize arbitrary images of the
chosen class. Problems arise also with greyscale and color image processing; there
are difficulties in detecting non-derivative elements in parallel, as their number in
real situations can be large. Thus, the main problems here relate to obtaining the
syntactic representation itself; in particular, with going from a direct representation
to a syntactic one.

Active investigations are in progress in searching for new forms of image
representation and new data structures, thus providing further advances in image
analysis and image “understanding” by a computer. One promising approach to
these problems is the usage of an hierarchy of various representations [23, 84, 68],
each being “competent” in its own strict tasks. However, there still remain
difficulties concerning their joining with each other, and with the existing
hardware. '

A matrix of pixels or a matrix of processors does not reflect the essence of
image data: a matrix element has only a position (coordinates), while the human
perception of image elements is as objects which have both position and a certain
form, both color and dimensions. There is an urgent need now to find new types of
representation which can account for image contents and which can be effectively
realized with computers. This requires the provide construction of processing
algorithms having a complexity depending upon the actual complexity of the image
being processed and not upon the number of pixels stored.

Alongside the syntactic (structural) description mentioned above,
morphological representation based on integral geometry and mathematical
morphology [115, 118] and the representation by tree and pyramidal structures
using an assembly of images of different resolution and size [92, 113, 119] are
being developed. It should be noted that, within the framework of these
representations, an elementary object to be treated does not coincide with a
brightness element of the initial image, but as well as position and color has some
other characteristics as well (size, for example). Operations with these elementary
objects are “richer” and more oriented to human perception, than operations with
separate pixels or their sets. Let us consider one of these representations in more
detail.
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1.3. Recursive Approach to Image
Representation

What is the reason why the image representation schemes described above fail to
solve the problems of machine perception? In brief, one can say: in direct and
syntactic representations a computer “is overflowed” with details, while in a
spectral representation it “does not see” these details. Where is that intermediate
level which would lead to a reasonable compromise between specialization and
integration? Let us consider the human experience relating to the permanent search
for, and development of, figurative means of spatial and color expression. Its
purpose was not only the mapping of the surrounding world, but also the transition
of a pattern to the spectator. Therefore, whether it be consciously or not, artists
consider in their works the particularities of human perception in order that the
impression gained from pictures be more complete, and that the influence power is
maximized.

Leonardo da Vinci “analyzed” his pictures taking into due account the laws of
perspective, the place from which the picture would be looked at, lighting, etc. The
paintings of the masters of the Renaissance can be compared to systems of full
perception: the view from a window is just as important for an artist as the hands of
a model. Details are carefully worked out, colors are repeatedly verified, the
composition is accurately balanced - all is directed to give rise to a full and adequate
from the spectator’s point of view, impression of the scene he sees.

But as time elapsed, artists began to change the concept of picture
construction. They understood that its sense would become more clear and the
impression stronger if unimportant details were damped down or even omitted.
Rembrandt’s and Hals’s canvasses contain only the main things - a touch creates
shape, details being in shadow, but all this only intensify the perception of the
main thought, the integral image. For a spectator, the artist stresses his intention in
the problem orientation of the picture, the information flow is compressed, but the
perception result is increased; in other words, a greater effect is reached with less
means. .

And yet, where is the boundary of image integrated perception? To what
extent can the same, or an even greater impression, be reached using meagre
means compared to that produced by a full reflection of reality? This question was
openly posed by artists at the beginning of the 20th century. Impressionists
provided a color image perception by limiting the pictorial means - the utilization of
pure colors only. Others began to analyze the shape of objects, the interrelation of
their parts, and object and phenomena structure. Portraits by Picasso and Braque
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comprise an assembly of “cubes” from which the spectator’s eye can construct
everything. The structural decay of separate elements of an integral image in such
cases is on the border of adequate perception by the spectator, but this verge
separating talent from quackery is not crossed, and we not only recognize, for
example, people so depicted, but also are able to understand their mood and their
character.

Irrespective of the shift of details, the substitution of smooth transitions for
spasmodic ones, cubistic representation of a man are still integrated images which
adequately reflect reality. But what are these images if not their complete
structuring? One step further, and we shall have an abstract picture (and this step
was made in painting), and then the structure scatters into an assembly of
disconnected ¢lements.

We believe that artists, while studying the “transmission” of images to
spectators, empirically approach that limit of image data representation which is
similar to an intermediate form of their transmission into the human brain. This
structural representation is close to the representation on the second level of human
perception, in which the analytical process is over whereas the synthetic one has
not yet begun.

Thus, compressed and structured representation of an image is still sufficient
for adequate perception. An important point is that this structuring can arise not
only from the semantics of an image, but also from the shape and brightness of its
separate fragments or objects. This makes it possible to device methods of image
data representation for a human, or for a computer analysis, in a
context-independent class which is not connected with the analysis of the contents
of the data processed, but based on a pre-determined processing scheme, and at
the same time preserving the image integrity like a two-dimensional or
multidimensional field.

Such methods appeared several years ago, and in this book they are called
representations based on pyramidal-recursive structures. A number of image
representation techniques can be united under this name: the corresponding data
structures having such common features as hierarchy and regularity [2, 4, 11, 19,
78, 144 1. Different authors call them pyramids [1, 35, 37, 43, 71], multiresolution
structures [34, 92, 119, 146 ], quad- and oct-trees [46, 50, 70, 73, 112, 120], cone
structures [138-1401], recurrent-recursive structures {141, 142], etc.

The first papers describing certain algorithms of image processing based on
similar structures appeared in the late seventies [64, 69, 78, 107, 134, 136, 138,
1461, then in the period 1985-1987 more than 100 articles were published within
this framework.
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In the case of a pyramidal-recursive representation, the processed image is
described by the ordered sequence of images of different resolution which converge
to the original one. These are arranged and drawn usually one under another
(hence the term “pyramid” of images). In one of the most widely used alternatives,
the initial image is broken into four equal square blocks (possibly intersecting),
then the breakage procedure is recursively repeated for each block until its size
becomes equal to that of a pixel of the initial image. Each block is ascribed a valtue
called “brightness” or “color”, being its generalized characteristics. On finishing
the process, we get a set of images each consisting of certain size blocks. These
images successively refine each other and converge to the initial one (Fig. 1.3a).

A pyramid construction can also be done in a reverse way, that is, from the
lowest levels to the highest ones, by uniting pixels (blocks) of the previous layer.
Sometimes pyramids are represented such that each image of the upper level has a
size less than that found below with the element size of all images being equal. The
structure of data describing the interrelations of brightness elements of all images
in the pyramid (Fig. 1.3b) is just an image representation in a computer at a logical
level.

Distinctive features of pyramidal structures are their regularity and hierarchy.
The regularity predetermines a convenient realization and the effective utilization
of such structures in computers, especially in parallel processing. Hierarchy
enables, simultaneously or in a consecutive order, work on images of a different
degree of generality, and to extract and to use both local (at lower levels) and
global (at upper levels) image characteristics. The hierarchy of descriptions having
different degrees of generality promotes the context-independent structuring of
input images which was attributed above in the representation of works of art.

This structuring can serve the basis for modeling both inductive (in the
bottom-up synthesis of data) and deductive (in pyramid top-down analysis)
processes of human perception. Simultaneous recognition can also be simulated
with pyramidal structures. In fact, if the algorithms of image data representation do
not depend on data content and are specified beforechand, then there is the
possibility of fast parallel input of image data into the system simultaneously with
obtaining the general description. This generalization does not require attributing a
semantic structure of images, i.e. it omits the long analytical way of perception.
Comparison of an image presented by the pyramid with the search pattern can also
be done in parallel, beginning with the utilization of compressed information from
the higher levels; that is why a decision about coincidence (recognition) can still be
made before the moment of descendine ta the lawer levele af the nuramid
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The natural way to describe the pyramid structure is the use of recursion [2,
11, 32, 73, 78]. Recursion is also a typical characteristic of image processing
algorithms using pyramidal representation of images: for many operations it is
sufficient to determine only an “elementary cell” of the structure and then to be
spread it on all other elements [10, 17, 59, 133, 142]. That is why we use the terms
recursive pyramids and pyramidal-recursive structures in this book.

Various determinations and ways of describing pyramidal recursive structures
are given in the articles (2, 35, 73, 82, 104, 113, 145, 146, 149]. Unfortunately, in
most cases they refer to particular cases of certain image dimensions and types.
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Fig. 1.3. Pyramid of images (a) and corresponding data structure (b).

A number of works describe techniques of identification of pyramidal-recursive
structure elements, because the organization of storage and access to these
elements, ways of their selection and processing are of great significance for the
efficiency of data processing algorithms [39, 49, 51, 73, 109, 111, 149]. The
techniques developed also refer to certain types and dimensions of images; they are

characterized by some other deficiencies discussed in (11, 15, 53] and in the

fallaurine chantere of the nresent monoeranh.
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At present, a large number of algorithms for image representation in the form
of different versions of pyramidal-recursive structures have been developed for
particular types of images (binary, greyscale) and classes of images (polygonal,
contour, segmented). Their main differences are in the ways of structure “filling”
by data, i.e. in methods of calculating pixel values at different levels of the
pyramid, depending on the brightness (color) of the initial image pixels [123, 128,
142, 146, 147].

Algorithms of image processing with pyramidal-recursive structures are very
diverse but, at the same time, often inconsistent. Various methods of coding [1, 44,
76, 114], filtration [34, 80, 98, 127], feature extraction [27, 71, 120, 147], object
identification [107, 132, 135, 146 ], segmentation {22, 31, 63, 64, 69, 99, 124 ], and
synthesis [50, 83, 87, 92] of images are proposed and realized. Many of these
algorithms demonstrate a high efficiency with different classes of images; however,
some important principles of their work and theoretical models of their functioning
are not yet developed, and it is mainly experimental investigations which have
been carried out.

Many authors consider that pyramidal structures are a perspective way of
image data representation which enables to solve some important problems of
storage, search, processing and the analysis of images in digital image processing
and computer vision. At the same time, the development of this trend is limited by
several factors.

At present, various modifications of pyramidal-recursive structures are used to
realize certain algorithms of image processing intended for the solution of
particular problems. A common mathematical apparatus of the description of
pyramidal-recursive structures, convenient for work with images of different types
and dimensions (for example, binary, greyscale, multizonal) has not yet been
created. Some researchers describe these structures as trees, others as lists, and
yet others as a set of matrices or multidimensional massive. Due to this, different
methods of image processing, based on pyramidal-recursive image representation,
often duplicate each other and, at the same time, are limited by particular
realization or an image type. This results in the treation of heuristic algorithms the
transposition and reproducibility of which are difficult because of the use of
different data structures and the orientation of particular applications.

Though much experimental material in working with pyramidal-recursive
structures has been accumulated, the respective image models both for binary and
greyscale images have not yet been developed. The absence of pyramidal-recursive
image models does not allow to study algorithms of image processing which exist or
are being developed, nor to predict their complexity depending on the
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characteristics of input images, to determine data volumes to be stored,
transferred, or processed in solving particular problems or in managing with
particular types of image.

Some problems concerned with the realization and utilization of
pyramidal-recursive structures in computers having a of sequential and parallel
architecture are not yet solved. In particular, these are the problems of
level-by-level processing of an image pyramid with a gradual refinement of the
results in the process of data analysis (similar to the “development” of an image
with a level-by-level transmission), and the processing of pyramid structures with
the use of nonredundant (compressed) data in systems utilizing
pyramidal-recursive representation as the internal data structure.

In this book an attempt is made to answer some of these questions by the
formulation and development of the recursive approach to a description and
processing of pyramidal-recursive structures with the recursion being both the
description technique and the approach for data operation [4, 5, 11, 15, 19, 53,
581].

Let us consider the main ideas assumed as the basis of the approach.
Pyramidal representation supposes one and the same law of transition from one
level of the pyramid to another with the law being formulated respectively to a
group of pixels of the lower level and, as a rule, one pixel of the upper level image.
Thus, to construct a pyramid, only an elementary transformation rule of a group of
pixels is given which is then spread “in width” to other elements and “in depth” for
other levels. This rule describes as well the scheme of the initial data conversion
and the resultant data structure (Fig. 1.3b). The structure is completed after a
particular image is given as the input information.

Recursion is the natural way to describe the interrelations of pixels of all
images from the pyramid: to build a structure, it is sufficient to indicate its
elementary cell (in Fig. 1.3b this is encircled with a dotted line) and the law of
transition to the next level. In other words, to build a structure, only a certain
“information gene” - the elementary cell - and the law determining its development
should be given. Successive utilization provides a stage-by-stage development of the
structure description according to the rate of detail.

This approach to the description of the information processes was formulated
in [4]. Many phenomena and objects can be found in real life all around us which
can be presented in just this way. For instance, Fig. 1.4 shows one of the
mathematical cbjects called fractals [83] built in the following way. Its elementary
cell is a pentagon shown in Fig. 1.4a; the development law consists of the
o etretinn of <imilar nentacons on its two short sides at each stage (Fig. 1.4b). By

INTRODUCTION 17

repeating the process, at the sixth stage one can get an object at Fig. 1.4c, which we
denote “cabbage”. It turns out that coast lines in geographic maps, the distribution
of moon craters, human lungs and many other objects of a different nature can be
modelled in a similar way [83]. Thus, the structures and characteristics of real
objects can be described and predicted using a recursive “genotype” of minimal
volume stored in the memory of the system.

b)

c)

Fig. 1.4. Fractal “the cabbage”: (a) basic element; (b) the second
stage of development; (c) the sixth stage of development.

It should be noted that objects mentioned in the examples given are not only
regular, but hierarchical: each stage of their development gives an object which in
some way specifies or refines the preceding one. This hierarchy is predetermined
by the description of a law concerning the development of an elementary cell; this is
the main difference from the classical description which typically realizes the linear
change of the basic element (see Sections 2.1, 2.2).

Another task is how to represent operations with objects (in the context of this
book - images) by pyramidal-recursive structures. Two main approaches are
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possible. The first is the transformation of the structure as an integral object or the
transformation of a set of pixels of an input image. In image processing, this is a
traditional operation. Let us recall, for example, filtration or edge detection. In the
case of recursive description, mass operations with pixels can be carried out by
describing the operation execution only for an elementary cell of the structure and
its subsequent expansion on all the cells of the structure.

The second approach, which, in our opinion, is of great significance, refers to
operations with separate patterns or with image regions. In essence, at the moment
there exists no mathematical apparatus which would provide the operating with
arbitrary parts of images as for elementary objects; rather, the region is actually
analyzed by a computer as a set of points. A point treated by a machine has no size
and shape; man, on the contrary, perceives spots and objects on the image, which
simultaneously have position, size and shape.

Pyramidal structures allow image fragments (blocks of pixels which have both
size and position) to be considered as elementary objects, these fragments being at
the same time elements of a recursive structure (nodes of a representing tree), or
pixels of different levels from the image pyramid. The apparatus of their recursive
enumeration is given below which provides a specification of the image block
position and size in a single description. It enables different operations with images
to be made and to refine the results of these operations in the case of image
decomposition for a more detailed representation at lower pyramid levels (see
Sections 2.3, 3.2, 3.3, 5.2, and 5.3).

However, not only is the size of the blocks important but also is their mutual
location. This determines the form of the object in the image. This characteristic
not can be deduced from the “pure” hierarchy; “horizontal” interrelations of
blocks of different size resulting from the object topology are also significant. The
recursive block enumeration allows to preserve these interrelations, or to restore
them quickly from the bloyks’ numbers. It makes easier both manipulations with
objects in the image and access to the data structure, which we called the pyramidal
structure with recursive enumeration of its elements, or, in short, the recursive
pyramid (see Sections 2.4, 2.5, 5.1).

One more aspect of importance is the way of representing image data, and
their processing, in physical devices. An important problem here is the method of
data ordering and access (in the computer memory, or in the case of data
transmission or processing) in order to achieve the most effective and rapid
handling. The ordering of pixels is practically equivalent to the mapping of a
multidimensional array into a one-dimensional sequence. We use such an image
data mapping from a pyramid which preserves the topology of a multidimensional
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array (in a certain sense) in a one-dimensional sequence. For example, recursive
scanning of a Peano curve type, the multidimensional generalizations of which are
described in [17], preserve in a one-dimensional neighborhood of a certain pixel on
average one half of its neighbors of a multidimensional neighborhood. Thus, image
processing can be accomplished using a one-dimensional image representation
only. “Uni-dimensionality” of each level of the representing structure turns out to
be adequate for the characteristics of those physical devices which are used for
processing: sequential performance of some operations and sequential data
transmission. At the same time, the ordering of structure elements can significantly
facilitate data processing in parallel devices too, as this leads to a unified
representation of an image of different dimensions (see Sections 2.2, 4.2, 4.3, 4.4,
and 6.4).

In general, the contents of this book is distributed in the following way.

Chapter 2 presents the theoretical basis of the approach. The known scheme of
primitive recursion is modified to describe developing hierarchical structures. The
definition of the recursive structure is introduced, and methods of the enumeration
of its elements are considered. Some particulars of different operations with such
structures are given.

Chapter 3 describes the interrelations of a pyramidal-recursive representation
with the traditional image representation forms; in particular, with
two-dimensional transforms. Pyramidal models of binary and greyscale images are
introduced and investigated.

Chapter 4 considers the problem of coding and compression of binary and
greyscale images represented by pyramidal-recursive structures. Image progressive
transmission with gradual refinement through the communication channels are
discussed.

Chapter 5 is devoted to solving some image processing tasks for binary and
greyscale images. A pyramidal model of a greyscale image is applied to an
hierarchical scene matching and arbitrary oriented object identification.

Chapter 6 contains descriptions of some applications of the approach
developed: an optical character recognition algorithm, a mineralogical model, a
structure of a specialized computer and some other applications are presented.



Chapter 2

RECURSIVE STRUCTURES
AND THEIR PROPERTIES

This chapter contains the basic theoretical results of the book. Its purpose is to
describe the mathematical apparatus for the operation with abstract objects of a
special type - pyramidal-recursive structures. The use of these structures to
represent and process image data is described in subsequent chapters .

In the first section, the meaning of recursion is analyzed and two of its specific
features are identified out - recursive definitions and recursive calculations. The
first is of importance in the compact description of a process or structure, and the
second serves for their transforms. The notion of a recursive structure is
introduced, which is later used as the basis for data representation.

The second section considers numbers, the real (numerical) line and
multidimensional space as recursive structures represented by K -ary regular trees,
where each tree node corresponds to some simple space region called a cell.

The techniques of cell identification in multidimensional space is discussed in
the third section. Each of the techniques corresponds to some space “scanning” by
an ordering of its elements. These scans are compared using the criterion of
preservation of topological properties of multidimensional space in an ordered
sequence of cells. For further utilization, those scans are chosen which allow spatial
processing of data using their one-dimensional representations.

The fourth section describes recursive scans of a multidimensional array which
enable cells identifiers to be used not only as symbols or names, but also as values
with certain operations defined on them. Based on these operations, manipulation
with elements of recursive structures and actually with regions of multidimensional
spaces of different dimensions are introduced.

The last section gives the notion of a pyramidal-recursive structure and
discusses the usage of these structures for the representation of binary, greyscale
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and color images.
The material of this chapter was presented before in [4-7,9, 11, 17,19, 591

2.1. Recursive Descriptions and Recursive
Structures

At present, the term recursive is often encountered in as applications to different
objects and processes. For example, in constructive mathematics and algorithm
theory we meet recursive functions, numbers, sequences [66 ], in signal processing
- recursive filters, in computer science and programming - recursive computers,
recursive programs, etc. [26, 101]. However, in detailed analysis the
“recursivities” mentioned above are different. In this section, two specific recursion
types are described, which are proposed by the authors for the compact description
and transforms of information [4, 6].

Etymologically, the term “recursion” originates from a Latin re cursio - to
return. Thus, proceeding from the original meaning of the word, all repeating
processes and those with feedback should be called recursive. However, these days
the word is mainly used in a narrower sense simply fo describe objects and
processes. Here are some examples of informal definitions of recursion. In [89],
one can read: “recursion is used to indicate that the definition of an object contains
a reference to the object itself.” In [26] it is said: “...in mathematics, recursion is
used as a means of describing a function or process in terms of itself.” Most clear is
the definition of Hofstadter: “...there are recursive definitions. Such a definition
can raise an impression that something is determined by itself. This might lead to
infinite looping, if not to a paradox. In reality, the recursive definition (being
formulated correctly) never determines something in its own terms, but always in
terms of simpler versions of itself” [67]. This important remark reveals the main
purpose of recursive definitions, that is finding a simpler mode of an object
description.

As a formal recursive definition, we shall take the simplest schema of primitive
recursion, widely used in constructive mathematics [66 ]1):

y(0)=aq,
y(n)=z(ny(n-1)). (2.1.1)

1) Usually this schema also includes the parameters:
y(0,01,...bnj=a(b1,....bn),

y(n b1,..bn)=z(n, y(n-1,b1,..,bn) b1,....bn),
but we omit them for simplification
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Here a is a natural number, y and z are functions the values of which are also
natural numbers. For instance, it is possible to write:

a*l=a, L=1, 0r=1,
a*tn=a(n-1)+a; an-an'la; n/=n(n-1)!..

The schema (2.1.1) is given only for numerical functions, but objects of
another nature can also be defined with it. Further, we interpret this more widely
in the following way. Let A be an object from the class A, AEA; Yis a function or an
operator, the argument of which is a natural number and the result is an object
from A; Z is a function of two arguments: a natural number and an object from A,
the result of which is an object from A again, then

{Y(O) =4,
Y(n)=2Z(n,Y(n-1)) (2.1.2)

we call a recursive definition of Y in the class A. Here, and later, on we omit the
term “primitive”, as only this type of recursion is discussed further.

A change of the number a in (2.1.1) for the object 4 in (2.1.2) outwardly
doesn’t change the schema though it significantly extends the sphere of its
application. The definition (2.1.1) in the case of n=1,2,3,... generates only a linear
sequence of numbers, whilst the schema (2.1.2) can produce complex objects of an
hierarchical structure. This is realised because the object Y(m), though belonging
to the same class as Y(m-1), can be more “complex” than the latter since it
includes it as a constituent part. For example, the fractal in Fig. 1.4 according to
(2.1.2) can be determined in the following way:

fractal “cabbage” (0) = Q ,

fractal “cabbage” (n) = fractal “cabbage” (n-1),
on every highlighted line of which (2.1.3)
afractal (0) in a scale 1 .'2r’/2 is built

The decisive factor in obtaining a hierarchical object, which is just the fractal given
above, is the possibility to set the operator Z in a way that, in a one recursion cycle,
at the n-th step several elementary changes in the object Y(n-1) might take place.
In this example, a pentagon is built at each side highlighted in the preceding cycle,
i.e. the object complication in the n-th cycle proceeds in two ways: due to a change
of shape of the object obtained in the preceding cycle and due to an increase of the
number of possibilities by which these changes can take place.

The main advantage of the recursive definition is the possibility to describe an
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object or a class of objects in a compact form. This predetermines the convenience
of recursive definitions used as a means of economic ally representing information
about a complex phenomenon. However, programmers, for instance, are aware of
the fact that recursively defined programs are often not very effective (in the sense
of consuming calculation resources) irrespective of their apparent simplicity and
compactness. This is due to the way the computer deals with not the recursive
definition itself but its somewhat converted form, which needs major means to be
achieved.

A human being carrying out the definition of the fractal (2.1.3.) would take an
elementary object of O-th order and then add to it pentagons of the 1st order, 2nd
order, etc., until he lost patience. The computer would handle this in quite a
different way. Having been given the task to construct a 10th-order fractal, it would
determine the action to be performed in the case of a fractal (9) and remember it,
than it would repeat the same for fractal (8), etc., until it reached the fractal (O),
which is known. This is the stage of problem decomposition. And only now, the
composition stage begins: performing of the remembered actions, as it was in the
case with the human.

The human proceeded by gradually refining the result obtained at the previous
step. As for the machine, however, instead of constructing an object according to a
law Z and an elementary description A, it has to bring the initial definition to a
form acceptable to perform the operations prescribed. Thus, the schema 2.1.2)
when used in practice turns out to be nonconstructive being inconvenient for the
automatic design of the object described. Let us therefore change its form.

Note, that to make computations, the machine has to convert the schema of the
recursion (2.1.2) by expressing in its right-hand side Y(m) through Z(m, Y(m-1 )),
that is

{Y (0) = A,
Y (n)=Z (n,Z (n-1,Z(...(1, Y(0))...))).

Replacing Y(0) = A, one can see that the function Y does not occur in the
right-hand part, i.e. the recursivity of the definition Y is replaced by using the
recursivity of the operator Z (as Z is an argument in addressing Z itself):

Y (n)=Z (n,Z (n-1,Z (...(1, A)...))). (2.1.4)

In fact, (2.1.4.) describes another type of recursion quite different from the
recursive definition. Barron [26] calls this the recursive utilization of the function
(operator), another way of referring to it is botfom-up recursive computation {891
Recursive definition and recursive computation are often confused. But in reality
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their interrelation is strictly determined. As is noted in [137]: “Recursion is a
method of problem solution by reducing the problem to one or more subproblems.
The subproblem is further reduced in the same way. Finally, subproblems become
small enough to be solved immediately. Later, the solutions of the smaller
subproblems are brought together for obtaining the solution of a larger subproblem
until the solution of the initial problem is obtained”.

By performing in (2.1.4) the actions prescribed by the operator Z (beginning
with its most inner entry) we obtain successive solutions of subproblems, and at the
n-th step - the object sought (solution of the problem). The advantage of
computation according to (2.1.4) is in transferring the labour-consuming process of
problem decomposition to a person. The description obtained is also actually a
computation algorithm. For example, a factorial computation can be described in
the following way:

n!=MUL (n, MUL (n-1, MUL (...(2, MUL (1, 1))...))),

where MUL (a,b) = ab.

By describing the action of the operator Z as a flow-chart, we obtain Fig. 2.1.
This is nothing but the feedback schema: A is an input pulse, Y(n) is the response
of the operator Z(n,a) depending in the general case upon the conditional time n,
and T is a unit delay. Thus, we return again to the initial meaning of the term
“recursion”, though in reality we have reduced the recursive calculation to one
iteration. To summarize, we can note the following.

First, (2.1.4) preserves all the advantages of the recursive definition (2.1.2)
because, to obtain an object, it is sufficient to define the elementary object and its
transformation law which depends, in the general case, upon the cycle number n,
but which does not depend any longer upon the object to be determined, Y.

Second, the construction of a complex object is described by a simple
algorithm, i.e. the description obtained is not only compact, but is easily realizable,
as only the solution of the elementary problem Z(n,a), a A is to be programmed,
while the stages of the object construction are performed automatically.

Third, the schema can be used both for the description of average numerical
functions and for the construction of complex hierarchical objects refined at each
recursion cycle. We are interested in such a case when some structure describing
the data to be processed is used as an elementary object A. The recursive
description of this structure in the form of (2.1.4) enables data to be processed in a
top-down way, i.e. by refining, at each step, the results obtained earlier.
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n A (for n=0)

a=Y(n-1)

Z(n,a) T

Y (n)

Fig. 2.1. Schema of the recursive calculation.

Let us discuss now the description of recursive structures. Note that using
schemas (2.1.2) and (2.1.4), it is possible to describe a set of objects. For example,
let us consider the definition of an positive integer number given in the Backus
notation: “Writing <digit> : : = 0 | 1 I... | 9 determines the class <digit> as
consisting of alternatives 0,1,...,9. Now more complex structures can be defined:

<interger without a sign>: := <digit> | <integer without a sign> <digit>.

This is a recursive description of integer numbers” [26 ]. Slightly changing this
definition, we get the description of an integer number according to the schema
(2.1.2):

<integer (1)> = <digit>,
<integer (n)> = <integer (n-1)> <digit>, (2.1.5)

where digit is a symbol from the set {0,1,2,...,9}.

The description (2.1.5) does not allow the construction of a single particular
digit, if at least one object is known which belongs to the set of digits. If it is known
what the digits are, for instance, <digit> : : =0 | 1 | ... | 9, then there is the
possibility of substituting different digits into the schema in order to get various
numbers. Thus, definition (2.1.5) describes not a single object of type “integer”,
but any object from the set of integer numbers, therefore it can be interpreted as
the definition of the class of objects.

Such a definition describes only the structure of an object from the class to be
Aotermined and the filline of this structure with particular information provides a
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particular object as a result. The structure of an object can be presented as a graph
G(S,R), where S is a set of nodes; and R is a set of arcs. An arc corresponds to the
utilization of the operator Z, every node defines a substitution of one particular
object from a set of such objects . This set we denote as B. In the above example
dealing with integer number, the arc indicates the adding of the next digit and the
node one of ten digits, i.e. B={0,1,...,9}. Then (2.1.5) defines the following
structure of a number:

the 1st digit the 2nd the 3d the n-th digit

If, at each recursion cycle, the operator Z is used several times, then one can
obtain more complex hierarchical structures. So, if we suppose that different
geometric figures (pentagons or polygons) with two highlighted sides can be
assigned as the elementary object A of a fractal (2.1.3), then at the n-th step one
obtains different figures having the same structure - binary trees, because it is only
on two sides of every figure that the construction of additional objects is done at

each step.
g
12 345678 J

0123455789 0123456789

Fig. 2.2. The structure of the class “integer number”.

If the set B of possible alternatives is ﬁnite: then it is possible to speak of a
structure which the recursive definition imposes upon the whole class of objects to
be defined. In this case, every node of the object structure is split into | B | nodes,
cach being identified and corresponding to one particular alternative from!B.
Figure 2.2 shows a structure corresponding to the class “integer number” under the
condition that 10 different digits exist. This is a regular decimal tree. A separate
object (number) is represented in the graph by a subgraph isomorphic to the
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structure of a single object. So, the integer number of n digits is a branch of a tree
containing n nodes.

The structure of an object or an object class is called recursive if it can be
described using the recursive definition corresponding to schemas 2.1.2) or
(2.1.4), where A is a set of structures, and A is a graph which will be called the
elementary cell of a structure. The operator Z can be called the structure
development law. 1f Z does not depend on any parameters, then it can be
considered as an operator of substitution at the n-th step of all structure nodes
identified on the (n-1)-th step for the elementary cell A (it is supposed that some
nodes of A are identified). For instance, the elementary cell for a regular k-th tree

is the graph

AN

in which nodes having the numbers 1,...,k are indicated, and for a rectangular grid

a the graph is

e— @
all the nodes of which are indicated. We further use mainly recursive structures as
trees which are regular and at the same time hierarchical. The structure filled with
data describes a particular information field (image), while an abstract unfilled
structure describes the interrelation of image elements of a different level from an
image pyramid (see Section 2.5).

2.2 Representation of Some Mathematical
Objects by Recursive Structures

To process an information field in a recursive form, skill is needed to represent by
recursive structures a domain of data (multidimensional space) and the data itself,
which can be both scalar and vector. Therefore, this section deals with the
technique of the description a number, a numerical axis, and a multidimensional
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space as recursive structures. They are presented in [11, 17].

The number, Let us discuss again the definition of a number (2.1.5). Another
equivalent form of this definition can be given, if the words “on the right-hand
side” are changed to “on the left-hand side”. Both definitions give a similar linear
structure to a number (and not only to an integer number; the same is valid for
numbers having a floating point, if to fix this point and to “build up” the number
figure by figure). The only difference of these definitions is that figures involved in
the writing of a particular number are written from the left to right in the one case,
while from right to left (beginning with low orders) in the other case. This
difference, at first glance insignificant, reflects principally different approaches
which can exist in data processing.

We shall explain this using a simple example. Let us take a binary number
x=0.x[1]...x[m] in the interval [0,1) and suppose that its bits x/t], +=1,...,m can
be extracted from the memory in two different ways:

@t= 1.2, ..., m and ®yt=m m-1, . .., I

It is easy to see that these ways correspond to the two forms of the recursive
definition of a number mentioned above. We shall fix the position of a point
representing x in the interval [0,1), to x equal, for instance, t0 0.1011 (m=4). After
extraction of only one bit, one can see that for approach (a) x is in the right half of
the interval [0,1), and for approach (b) x belongs to one of eight intervals of length
1/16. These results are shown in Fig. 2.3, where still unknown bits are denoted
with the symbol “*”. After extraction of two bits, one can find that: (a) x belongs to
one fourth of {0,1), and (b) x belongs to one of four intervals of length 1/16. The
process can be repeated for any t<m (Fig. 2.3).

According to information theory, the extraction of each next bit decreases by a
factor of two the uncertainty of the x position in [0,1) irrespective of its position in
the string of x bits (under the condition that the probability of the appearance of 0
and 1 are equal), hence, in information theory, the approaches (a) and (b) are
equivalent. Really, after extraction of ¢ bits, the sum of the hatched sections on Fig
2.2.1a is equal to those on Fig 2.2.1b for any ¢ and equals 2.

However, if it is necessary to indicate the absolute error with which a number x
is obtained after the extraction of ¢ bits, then approach (b) quickly yields to the
approach (a). For the case (b), the error is equal, on average, to 1-2t'm, and for (a)
it decreases exponentially as ¢ grows and equals 2", The cause of the difference of
bits extraction ways is the positionally of notation. It reflects the inner hierarchy of
description something by a number. If the hich orders of 2 number are known  then
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the lower-orders only refine the information which is already available due to the
primary digits.

Hence, the bits (digits) of a number in the position notation can serve as a
natural basis for the organization of bit-serial procedures of data processing - from
the most significant to the least significant bits. At the same time, these bits or
digits refiect the hierarchy levels of the model described by the number. (It should
be remembered, of course, that the figures and notations are arbitrary, and reflect
not a “natural”, but a “forced” hierarchy of the phenomena with which they are
combined. Therefore, all notations should be equally valid for describing real
phenomena, while the choice of a particular notation is made only from the point of
view of convenience).

Thus, the “right-hand” recursive definition of a number generates a structure
of the number which corresponds to the inner hierarchy of the phenomenon
described by this number. Progressive algorithms yielding a gradual refinement of
the results can be based on this structure.

a) b)
A T A1) izj;g* B
0 r=01xxx 10 TSON\/E=—q
—t—t ff—t- 4 I d t-_—Z:D_r + w ‘w 4 w m
0 =0.10 % % ! ~._" 1

= xZ0 %% 11
i 3 i T S | t_ ¢ el domd 3 + IS ¢ I 1[1_1
Fe———+ Yz ) —35 ) —
0 x=0101* x=0.%011
bbbttt £ =4 et
0 10 2] 1
x=0.1011 x=0.1011

Fig. 2.3. The uncertainty of a point location decreasing with the successive
extraction of bits of its coordinate using two different methods.

Numerical axis. In making measurements in practice, researchers are always
dealing with a finite amount of significant digits of the parameter measured and
strict ranges in which the measurements are made. This means that we use the
following model of a measurement process: to find an element from the finite set

which is equivalent to the unknown object. When the element is found, the object is
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attributed with its all known properties. This is the principle of “identification by
indistinguishability” first formulated by Leibnitz.

Most often gradations of some scale appear as identifying elements (ruler
points, for instance), with the number of these gradations being finite, as is their
minimum and maximum values. If this is not stipulated, then the scale analyzed is
considered to be normalized using a unit interval. Let us identify the gradations of
this scale by exact fractions using an integer base k notation. Then a recursive
structure (one of many possible) in the form of a regular k-ary tree with m levels is
brought into correspondence with the scale. Each branch of the tree corresponds to
a proper fraction of m digits, which identifies a gradation with the utmost
resolution. Limited number of #<m nodes on a branch gives a less accurate value of
the same gradation. The number of such “rough” gradations on the scale equals K-
according to the number of nodes of the #-th level of the tree (Fig. 2.4).

Thus, the recursive structure of a number (positional notation) yields a
recursive tree-like structure, each node of which has a one-to-one correspondence
with a gradation of a one-dimensional scale of certain size, and each level with a
scale of a certain resolution. This set of one-dimensional scales we call a the
dynamic discrete space [4] of dimensionality 1. Formally, this can be defined in

the following way. Let p'= [0,1) be a unit interval and choose the decomposition
base k (or notation base). Then:

First order cell g(ij) = interval [ i1k-1,( irt! )k_])DI,
i1 is the cell number;

m-th order cell g(i]...im) = interval [imk " (int1)k "]
q(il...im-1), i1... 1 m is the cell number™”.

The discrete space of the m-th decomposition is a set of cells of the m-th order:

Do’ ={q(itoim), i=0,....k-1; t=1,...,m}

The dynamic discrete space is a set of discrete spaces of decompositions from 1
to m. The term “dynamic” means that making-m variable or considering the case
with m=1,2,3,..., we obtain a refined (developing) object, which at the same time
preserves all the properties of the preceding one.

1) Note that these are quantitative scales, hence the node number are not only indentifiers, but also
some quantitative characteristics.

2) i1, ..., imarek-ary digits of the cell number.
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a)

012
2.4. The recursive structure of a numerical axis interval (k=3).

Note, that the construction of a discrete space Dml means the simultaneous
construction of all discrete spaces Dtl, 1,...,t, because it is always possible to
identify the cells g(i1),...,q(i1...im-1) of the D11,...,Dm-11 spaces by the number
iJ...im of a cell g(ij...im). The most important properties of the one-dimensional
dynamic discrete space are:

Property 1. All points of the unit interval D' belonging to the same cell of the
t-th order g(iy...it) are indistinguishable, if the numbers of higher order cells to
which these points belong are not indicated. For certainty, all the points of a given
cell are assigned the same coordinate, called the cell coordinate. For example, the
middle of a respective interval or the left-hand end of the interval can serve as the
cell coordinate.

Property 2. Any point x€[0,1) univocally corresponds to the sequence of
nested cells g(i1), q(i1i2),...,q(il...im) where iy,...,im are the first m digits of the
k-ary decomposition of the number x.

Consequence 2.1. The digits i1,...,im determine both the number of a cell (in
their listing from left to right), equal to Q=iJ....im in k-ary notation and its

coordinate in D' equal to
L
g=0.i]...im=2 ltk
t=1

Consequence 2.2, Cells whose numbers are differ by a unit in the last digit are
iohharing calle in Dol and  vice versa neishborine cell have numbers which
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differ by a unit.

Property 3. Let us define the distance between cells as the distance between
their centers, and the distance between points DI at a given level ¢ as the distance
between cells of the r-th order to which these points belong. Then the distance
between two points in a one-dimensional discrete space can be determined using
both the coordinates of the respective cells and their numbers:

-t
[l x1-x2|1=k" |Q1-Q2| = |&1 — &2].

It is not difficult to see that an error in determination of the distance between
x; and x2 is not higher than k't/ 2, i.e., it exponentially decreases with an increase
in the decomposition number. This important fact shows that the distance between
points in a one-dimensional dynamic discrete space (as well as the coordinates of
these points) can be calculated, and with a calculation performed gradually,
beginning with a rough estimation and refining this with higher decompositions.
Each refinement stage corresponds to passing over to the next level of the recursive
structure.

Cells of the dynamic discrete space DJ have a one-to-one correspondence with
the nodes of a regular k-ary tree (Fig. 2.4b). The numbers of nodes of this, tree are
the last figures of the numbers of the respective cells. The cell number can be
restored by reading the numbers of all the nodes from the root to the correspondent
leaf. The numbers of the neighboring nodes, as well as the numbers of neighboring
cells, differ by a unit (modulo k). This tree with enumerated nodes is the simplest
recursive structure which can be used for the representation of a one-dimensional
image (signal).

Multidimensional space. The coordinates of a point in a multidimensional
space can be determined via its coordinates on each of its axes, as it was done
by Descartes. This way predetermines the technique of multidimensional task
solving when the initial task is decomposed into more simple subtasks of lower
dimension. However, there exists another approach: decomposition not by
dimension, but by accuracy. The determination of a point in this way is a successive
refinement of its position with respect to the system of neighborhoods of different
sizes covering the multidimensional space [6, 17, 51, 129 ].

In the context of the present book, these neighborhoods are hypercubic cells.
The coordinate of a point in a multidimensional space is, in this case, a single
number which is defined similarly to an ordinary coordinate in a one-dimensional
space with the gradual refinement of its digits. We call it a positional coordinate.
For a p-dimensional space, we define a positional coordinate of a point recursively
by accuracy (or the number of significant digits):
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Fig. 2.5. The structure of the interrelations of cell in a two-dimensional discrete
positional coordinate (1) = .digit (2.2.1)

positional coordinate (m) =
= <positional coordinate (m-1)> <digit>,

where <digit>::=011121..iK.

According to this, the positional coordinate is an exact fraction from 0 to 1 in
K-ary notation. If we consider all the points of a multidimensional space having the
same positional coordinates of given accuracy to be indistinguishable, then the
positional coordinates define the space decomposition into cells. In this case, K is
the number of cells (quanta, elements) distinguishable in a cell of the previous
level.

In the above definition, the dimension p of a space is not presented at all. To
identify a point or a cell of a p-dimensional space turns out not to be necessary and
will appear only in the description of operations with cells.
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The definition (2.2.1) overlays the recursive structure as a regular K-ary tree
on a multidimensional space. Each branch of the tree identifies a cell of specific
discrete space and determines its positional coordinate. Figure 2.5 shows the 4-ary
tree with three levels, corresponding to two different structurings of a
two-dimensional space. As for the one-dimensional case, each structure level
corresponds to the space decomposition into cells of a certain size with a one-to-one
correspondence to the structure nodes.

Now let us give a formal definition of a multidimensional dynamic discrete
space. Let D’bea region of a p-dimensional space and choose the notation base K.
Then the following recursive definition of discrete space cells can be given:

First order cell d(i1) = i1-th element
a decomposition of D’ into K equal parts;

m-th order cell d(ii...im) = im-th element
a decomposition of d(ij...im-1) into K equal parts.

The discrete space of the m-th decomposition Dmp = {d(i1...im); it=0,...,.K-1;
t=1,...,m} is the set of m-th order cells. The dynamic discrete space of dimension
p, the D p, is set of discrete spaces Dpt with #=1,...,m. All the spaces Dm-1p,...D1p, as
in the one-dimensional case, can be considered as progressive modifications of the
space Dmp .

The definition given differs from that for one-dimensional discrete space only
by not mentioning the law (order) of enumeration of each of the decomposition
elements. This is the main difference between a multidimensional space and a
one-dimensional space: the enumeration order (left to right) in DmI was “natural”,
i.e., it originated from the properties of the numerical axis itself; there is no such
natural order in Dm’J , and the cells should be enumerated so as to facilitate the
solution of multidimensional problems. These questions will be dealt with in
Section 2.3. Here, it should be noted that the enumeration law of the m-th order
cells within each cell of (m-1)-th order should be known, otherwise the positional
coordinate of is “disconnected” from the position of a given cell and, thus, not can
serve as its identifier.

If the enumeration laws for all the discrete spaces D/ ,...,Dmp are known, but
are taken arbitrarily and differ from each other, then the positional coordinate is
suitable for identification, and only for this. Of practical interest remains the case
when the positional coordinate serves not only as a cell identifier, but also serves as
a means of handling quantitative interrelations between discrete space cells, as is
the case for the one-dimensional case (see Consequences 2.1, 2.2 from Property 2
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and Property 3). Then the complete “spatial” information is contained in the
numbers of the cells or nodes of the recursive structure. It is possible to work with
the structure both as a set of multidimensional arrays and as a flat graph, without
recourse to the space dimension.

To do this, we choose certain enumeration law of m-th order cells, obtained by
the decomposition of a cell of (m-1)-th order, ad apply it to all discrete spaces
D/’ ,...,Dmp . Only quite definite enumeration laws, out of all possible alternatives,
are of practical use, as is shown in the next section.

The main properties of the multidimensional discrete space D’ (apart from
those related to the enumeration law of the cells) are just the same as those of the
one-dimensional space, Dml:

Property 4. All the points the of cell D(ij...im) are considered to be
indistinguishable until the numbers of cells of higher orders to which these points
belong are unknown.

Property 5. Any point x€D” uniquivocally corresponds to the sequence of
nested cells d(iy), d(i1i2),...,d(il...im) where ij,...,im are the first m digits of the
K-ary decomposition of the number x. The number

m
G=iloim = > iK™ (2.2.2)

=1
determines the positional coordinate of a cell

&t
g =2 K i
=1
which can be also written as g=.iJ...im, where i is the ¢-th K-ary digit of g or G and

O0=<g<l.

Note that the region D can be of varying shape; in principle, cells of different
orders can be dissimilar [2, 40 ]. For the representation and analysis of images the
alternative is convenient when the region D’ is a unit hypercube, i.e. D= [0,1 P2,
with cells of all orders being similar to each other and to the D®, and also being
p-dimensional hypercubes (Fig. 2.5). This case is analyzed below.

If k is the number of equal parts into which a side of a hypercube is divided
with each following decomposition, then K=K’ and the positional coordinate of a cell
can be written as follows

m
g = ik ” =lijin, (2.2.3)
t=1

where it is, as before, the r-th k° -ary digit of g.
An important feature of the positional coordinate (2.2.3) is that it indicates
simultaneouslv both the cell position in the multidimensional space and its
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dimension. This property is a general characteristic of numbers written in a
position notation; however, it is not of practical use.

The expression x = (.5 means that, in practice, the decimal digits of a number
following the digit 5 are unknown (or not needed), and therefore, x is not a point
on the axis with the coordinate 0.5, but an interval of length 0.1. Depending on the
way of rounding x, this interval can have the point 0.5000... either as its center or
its left-hand end (usually this is the interval [0.45, 0.55)). Similarly, the number of
significant digits in the positional coordinate determines the size of the respective
cell. Hence, it follows that operations with a positional coordinate of a cell are not
those of a point object, but rather those dealing with a region of multidimensional
spacé. They can be considered as operations with a set of higher order cells at once.

The structure of the interrelations of different order cells in the dynamic
discrete space D P is a recursive structure. It is a graph with enumerated nodes (in
the context of this book it is a regular K -ary tree); these nodes have a one-to-one
correspondence with the cells of D?, with the arcs of the graph connecting the
nodes corresponding to the cells having the numbers Gr=iy...it, G2=/1...jijr+1 under
the condition that ij=ji,...,irjt,t=1,...,m. The enumeration of nodes having a
common ancestor is the same as that of #-th order cells obtained.by the
decomposition of the (¢-1)-th order cell.

2.3. The Enumeration of Cells in
a Discrete Space

Let us consider the dynamic discrete space D? and the respective recursive
structure to be a k’-ary tree with m levels, where each level corresponds to the
discrete space Df , t=1,...,m. The enumeration of cells in the discrete space
determines also the enumeration of the structure nodes, i.e. the recursive number G
or the positional coordinate g=k'p 'G=.i 1...ir corresponds to each node of the #-th
level. The sequence of digits iy,...,ir determines the branch of the tree on which the
node is to be found. This provides the restoration of hierarchical interrelations
(through the upper levels of the tree) of arbitrary structure nodes. However,
besides this, the identifiers of the structure nodes should provide for the easy
restoration of “horizontal” interrelations of nodes, which for example, enables a
fast search of the neighboring cells in Df.

Therefore, a question arises: what additional requirements does the
enumeration law of the D{ cells have to satisfy in order to solve multidimensional
problems (determined for D”) using identifiers of the structure nodes, i.e. the




38 IMAGE REPRESENTATION AND PROCESSING

positional coordinates of cells. These problems are dealt with in [11, 53]. Note that
the enumeration of the ¢-th order cells determines the means of traversing these
cells in p-dimensional space, i.e. it actually determines the method of
p-dimensional scanning of the hypercubic array. The task before us is as follows:
find the methods of the array element ordering to preserve the information of
multidimensional space topology in the kP -ary tree with enumerated nodes.

In practice, the scans which are of greatest interest are those which either give
the highest probability of finding those array elements which neighboring the given
orie, in its neighborhood after scanning, or which allow the preservation of
operations with elements by carrying over the properties and rules of those
operations to the positional coordinates of the cells.

Let us consider the p-dimensional discrete space of the m-th decomposition,
Dp’. The set (array) of cells {d(i}...im)} of this space is lexicographically ordered
with positional coordinates g; = .i1...im, i = 0,...,K°™-1, where k is the number of
parts into which the side DP is divided, or the decomposition base. Thus, the
scanning technique for an array of N=K’"™ elements is determined by the
enumeration of Dp’ cells, and consists of listing cells according to the change of
their positional coordinates. Let the enumeration law for an m-th order cell
(obtained by splitting the (m-1)-th order cell) remain unchanged with any m and
be determined by the 1-st decomposition enumeration law. In this case, the scan
belongs to the class of recursive laws ([19, 129], examples of which are
Hilbert-Peano scans [17, 29, 36, 60, 65, 103].

Formally, it may be assumed that the positional coordinate (2.2.3) determined
by the cell numbers is, at the same time, the Cartesian coordinate (in KP-ary
notation) of a cell of some one-dimensional discrete space, for, in one-dimensional
space, the position and Cartesian coordinates coincide. Then the recursive scan can
be considered as a one-to-one mapping of the multidimensional discrete space to a
one-dimensional space:

Om: Dnl - Dml, (2.3.1)

where Qm(d(i1...im)) = q(i}...im) for ir= 0,...,k°-1, t = 1,...,m. Such mappings have
been studied in the papers [5, 7,9, 12, 13, 15, 17, 19, 29, 59, 60, 79, 81, 96, 103,
117,121, 122, 128, 1291

Let us state, without explanation, the main properties of recursive scans which
concern the interrelations of distances between points in a multidimensional space
Dy’ and the distances between corresponding points measured along the scan or,
which amounts to the same thing, in a one-dimensional discrete space
Dm1= Om( Dy where Qum is determined according to (2.3.1) [8,171.
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Property 6 Let x1=(x11,...,x1p), x2= (le,...,xzp) be two points of DP. Let two
cells, dj, d2, from Dmp , correspond to these. Then, if the first ¢ digits in the k-ary
decomposition of x / and xzj , F=1,...,p coincide, (that is, entier (x 1" kt) = entier( xzjkt)
for f1,...,p), than the distance between the cells ¢/=Qm(d;) and q=Qm(d2) from
DmI, or the distance between the points x1 and x2, along the scan does not exceed
than ™. (Suppose that the scan length is normalized to 1).

We call this convergence by decomposition. It means that with an unlimited
increase of the decomposition number, m coordinates of the images of any points
D’ in the space DmI converge to a certain limit. This property is important for the
organization of a step-by-step solution of multidimensional problems for which, at
each step, the result of the previous step is refined. Note that all recursive scans
possess this feature which follows directly from (2.2.1).

Consequence 6.1. The one-dimensional neighborhood of m-th order cell
q(il...im) € Dml - the covering cells of (m-7)-th order - always contains cells
which, in multidimensional space, ncighborl) the cells d(il...im) € Dmp in the
direction of each of the coordinate axes.

Property 7. Let the graph of a recursive scan be given in Dy’ Shift the graph
for the k”™ value along all Cartesian coordinate axes, i.c. along the main diagonal
of D’ (with part of the scan extending beyond the D? limits). Denote the discrete
space determined by the shifted scan as c’.

Then, if x;€Dp and x2EDp are points belonging the neighboring m-th order
cells, then in either Dy, orin Cn’ these points are in the same cell of the (m-1)-th
order.

Consequence 7.1. Cells of the m-th order, which are neighbors in
multidimensional space, have images in the one-dimensional space belonging to
one and the same cell of the (m-1)-th order either in Dm1=Qm( Dmp ) or in
Cm'= Qm( Cr’).

Conseguence 7.2. If the point x€Dp belongs to the cells d( il...im)EDm’ and
d(j1...im)€ Cmp, then two cells of the (m-1)-th order, d(il...im) € Dm-i° and
d(ji1...jm) € Dm- 1” , cover all the cells of the m-th order, which neighbor the point
containing x. Similarly, the cells g(il...im-1) and g(j1...jm-1) cover the images of all
the cells which neighbor those containing the point x.

This important consequence reveals the possibility to reconstruct the
multidimensional “cross-like” neighborhood of an arbitrary p-dimensional cell (i.e.

t
o
f

i
1) Two p-dimensional cells are neighboring cells if they have a common p-1 order side.
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nd all the neighboring cells) using only two mappings of the multidimensional
discrete space onto one-dimensional space and searching not more than K’
elements in each one-dimensional array of cells. This statement was proved in [9].

If any two cells, the number of which differ by a unit, have a common side of
order p-1, i.e. are neighbors, then the respective scan is called quasi-continuous
[17, 36]. This means that each scan “step” is along one of Cartesian coordinate
axes and has a length equal to the side of a given cell. The quasi-continuous
recursive scan has one more important property:

Property 8. It is possible to describe quantitatively the interdependence of the
distance between cells in a multidimensional discrete space and the distance
between them measured along the scan, i.e the distance between cell images in a
one-dimensional space Dml after the mapping (2.3.1):

ixpexg |1 y< k(2V+p-1)"V 11 gr-g2 11777, (2.3.2)

wherellxllv=(i 1x19 )Vq;
j=1

x1=( x11,...,x1p ) and x>=( le,...,xzp ) are integer, or normalized to [0,1), Cartesian
coordinates; g; and g2 are integer, or normalized to [0,1), corresponding positional
coordinates [17, 36, 129]. Scans which satisfy the relation (2.3.2) enable some
properties of information fields to be studied without referring to their
multidimensional representation, instead working only with one-dimensional
ordered sequences of their elements.

Let us list also some features of the most useful two-dimensional scans
(nonrecursive scans included), since the two-dimensional case is the most
interesting in the context of image processing. Each of the scans can be
characterized by the value of a neighborhood index [15, 59). This integral scan
characteristic is calculated in the following way. Take eight elements of an array of
two-dimensional cells, surrounding a cell with the number g. After the array is
“unfolded” into a one-dimensional sequence, find the number ng of these elements
which form a one-dimensional chain without breaks which also contains the g-th
cell. Evidently, 0<ng<8. The value

1 N-1
J m*= ﬁ 2 hg
g=0
(N=k2m is the total number of cells) is called the neighborhood index of a scan and

characterizes the average number of neighboring elements preserved by this scan.
With m = «, Jm tends to the limit designated below as J; the values of J« have

been given in [§9].
One more feature of a two-dimensional scan, which is of use in the
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investigation of the properties of a two-dimensional information field, is the
symmetry coefficient C [15, 59]. With p=2 this is the ratio of the number of scan
“steps” along the x axis to that along the y axis (the x axis is considered to be the
axis having the minimum number of steps along it). According to the definition,
0<C=<1l.

The main features of various scans are given in Table 2.1. The scans
themselves are shown in Fig. 2.6. Table 2.1 shows that recursive scans have
significant advantages over traditional ones. Thus, it is reasonable to make the
enumeration of cells of each decomposition #=/,...,m in a dynamic discrete space in
accordance with one of the recursive scanning laws. Certain conclusions can then be
drawn about the spatial interrelations of cells in the multidimensional space and
about the hierarchical “subordination” of cells of different order using the
recursive numbers of nodes in a recursive structure or, which amounts to the same,
the positional coordinates of cells.

At the same time, it should be noted that the positional coordinates
constructed on the basis of the enumeration of Dmp cells according to one of the
recursive scans do not yet provide all the necessary operations with structure
elements. In particular, they do not enable an extract calculation ( no;' even
approximately as in (2.3.2)) the distances between different D’ cells. Two
approaches can be used to eliminate these difficulties: (1) to go from position to
Cartesian coordinates, and vice versa, when required; (2) to determine operations
with positional coordinates which are analogues of the necessary operations with
Cartesian coordinates. Both alternatives are discussed below.

Table 2.1. Characteristics of two-dimensional scans

Conver- impli
Scan type Quasi- Genera- Simpli-
See gence by . Joo C L city of
conti- lization
Fig.2.6 decompo- ) value value descrip-
ig.2.6) .. nuity . on any p
sition tion
@) - - 2 0 + +
(b) - + 2 0 + +
© - + 2 1 - -
(d + - 3.5 0 + +
(e) + - 3.6 0.5 + +
® + + 4.6 1 + -
(¢:4) + + 4 0.33 + -
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2.4. Cartesian and Positional
Coordinates. Operations with
Positional Coordinates

Let us consider a set of vectors describing the coordinates of points from Dp’. Each
vector x can be brought into correspondence with two coordinate representations:
The Cartesian coordinates are x=( xl,...,xp ), and the positional coordinates are
gx=.i1,..,.im. In the description gx=.i],...,im the line ij,...,im is a single number (s its
1% -ary digits), which can be both the vector’s identifier (corresponding to be cell’s
number) and the value (positional coordinate) for which various vector operations
can be defined [11, 51, 53]. Both representations are equivalent (.e. the set of
Cartesian and position coordinates can be compared via a one-to-one
correspondence), which is not difficult to show as follows:
Decompose the component %7, g=1,...,p of the vector x into the k-ary fraction:

m
=X 1) mj = Sk g=1,...p, (2.4.1)
t=1

where x?[t] is the t-th k-ary digit of the ¢g-th coordinate component of the vector x.
The value xq[ t] can also be interpreted as the g-th projection of some vector
( x1[ t],...,xp [t]) - let us denote this as x/¢]. Then x can be represented in the
following way:
m
x= 3 x[tk” (24.2)
t=1
Figure 2.7 presents a geometric interpretation of the expression (2.4.2) for the
casep=2,m=3,k=2,and x=(0.75, 0.875)=((.110)2, (.111)2). Note that x[t],
t=1,...,m are no less than Cartesian coordinates of the t-th order cell = with respect
to the covering cell of the (#-1)-th order. If the enumeration law of the cells in
discrete space does not depend upon the decomposition number, then the vector
x[t] is in a one-to-one correspondence with the number i of the t-th order cell into
which x falls, i.e. i; can be considered as one more denotation of the vector x/¢]. In
fact, each component of x/t] has one of the k values. There are p components in
total, i.e. there exists ¥’ different x[t] vectors. The index i also has K different
values, which we shall consider as names (numbers) of the vectors x[t].
Thus, the representations of (2.4.2) and (2.2.3) are equivalent, and the KP-ary
digits ij,...,im Of a cell’s positional coordinate can, at the same time, be considered

1) For Cartesian coordinates of a cell, we take those of the point closest to zero, i.e. the “lower left”

m~rverrnee AL A ~rall
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Fig. 2.6. Two-dimensional scans: TV-scan (a); continuous TV-scan (b); spiral
scan (¢); z-scan (d), I1-scan (e), Hilbert scan (f), Peano scan (g).

as vectors, the weighted sum of which equals the vector x of the Cartesian
coordinates ( x1,...,xp ) of the same cell (Fig. 2.7).

Let us take the Cartesian coordinates of the x/t/, read as a number in k-ary
notation as a number it of a 7-th order cell. This enumeration corresponds to a

Z-scan of the Dp space described in Section 2.3. For example, with k=2, p=3, we
have
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x[t]=(0,0,0) < ir=0002=0s,
X[t]=(o,1,0) « it=0102=28’
x[t]=(1,0,1) ¢ iy=1012=35s.

In the general case, we can write for the enumeration mode chosen:
p -
it= (> AU Y modi. (2.4.3)
s=1

There are, of course, other methods ( p!/ in total - due to the number of
permutations of k-ary digits xI[ 1 ],...,)&D [t] ) of the interrelation between ir and
x[t], which corresponds to other enumeration laws of cells in the multidimensional
discrete space Dy,. These can be considered in a similar way.

The following expression can be used as the corollary of (2.4.3):

Jrt] =k entier(ig/kq_l)-entier(it/kq), 1,...,p. (2.4.4)

This enables finding the t-th k-ary digit of the g-th component of the vector x if
the ¢-th digit iz of the positional coordinate is known.

For recursive structures, it is sometimes more convenient to manipulate integer
numbers of nodes, but not with the coordinates of respective cells normalized to
[0,1). In this case, the set of integers J=(j1,...,jp), which are the numbers for a cell
in a line, column, layer, etc. of a multidimensional array of cells, corresponds
one-to-one to the Cartesian coordinates x =( xI,...,xD ) of this cell:

T=Kx ie jo=k%%% q=1,...p. (2.4.5)

Combining the expressions (2.2.2), (2.3.1) and (2.4.2)-(2.4.5), we obtain the
interrelation of a cell’s recursive number (or the number of the recursive structure
node) and the respective integer Cartesian coordinates. This interrelation can be
written as follows:

G=i1...it=Qt(J)=1Qt((f1,..-,1'p))
J=(jleesip)=0Qf (G)=Qf (i1...it),

where ir=0,.. KP-15 t=1,..om ; jg= 1, K.

This relation enables the cell position to be found using its number, and vice
versa. The mapping Q is nothing but a description of the enumeration law of 7-th
order cells or the law of multidimensional discrete space scanning.

Let us now consider operations with positional coordinates. As has been shown
in Section 2.3, the positional coordinates and node numbers of the recursive
ctructure under certain conditions provide information about the spatial relations of
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Fig. 2.7. Interrelation of Cartesian coordinates x and the positional coordinate gy.

discrete space cells; for example, enable the distance between them to be evaluated.
Let us introduce analogues of vector operations for the positional coordinates
(addition, multiplication, scalar product) [6, 11, §3]. This makes it possible to
achieve two main goals: first, to define operations with vector images (for example,
color) by means of operations with positional coordinates, i.e. to reduce vector
fields to scalar ones; second, to introduce operations with image regions as
analogues of operations with numbers.

Addition of Vectors. Let us consider the vectors x, y, z € D’ and x+y=z. Two
representations are given for each vector:

{x=(x’,...,£’), {y=(y1,...,yp), { 2=(z,...2),

x=.i]...im,' gy=.j]...jm,' gz=.h1...hm.

It is necessary to find a relation of the form Aj...Am = f(i}...im,j1...jr), i.€. the
“addition” rule of the positional coordinates (denote this as @) corresponding to
the addition of the Cartesian coordinates of the vectors x and y. Express z using the
decomposition of the vectors x and y (2.4.2):

m
z=xty =Y (x[1]+ ylthk "
t=1

The sum x/t/+y[t] depends only on the value of the k-ary components of the
vectors x/t/ and y/t/, although it does not depend on ? if the enumeration law of
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the multidimensional discrete space cells remains one and the same for any
decomposition number . Thus, the addition rule of the k-ary digits ir and jr, which
are, at the same time, the identifiers of the vectors x/t] and y/?], remains the same
for any #=1,...,m. It is called the positional coordinate digit addition rule. To
express this by usual manipulations, find the recursive number Gy of the vector x/t]
+ y[t]. Each component of this vector xq[ t]+ yq[ t] can range from 0 to 2k-1, i.e. it
contains not more than two k-ary digits. Then Gt contains two kP -ary digits. From
(2.4.3) one can obtain:

0.
it @jr=Gi=kgrg=k > KICk(x 11+ 1) +
q=1

+ }p: U + Y 1 D mod & (2.4.6)
g=1
where Ci( * ) is the value of the highest-order k-ary digit of ().

The digit g2 is the contribution of it +j; to the t-th order of the positional
coordinate of the vector z - digit Ay, as ( xq[ t] + yq[ t])mod k influences only the
component xq[ t]. The digit g1 is a “carry” from summing i + j: into the (t-1)th
order of the positional coordinate of the vector z - digit Az, as Ci( xq[ t] + yq[ th
influences only the component zq[ t-1]. So, the relation (2.4.6) describes the
addition rule for orders of the positional coordinates. In particular, the following
table of addition for the digit of the positional coordinates for two-dimensional
space and k=2 can be found from (2.4.6):

i®j !
0o 1 2 3
0 0o 1 2 3
1 1 10 3 12
/ 2 2 3 20 21
3 3 12 21 30

The first digit in certain positions of the table is a “carry” into a higher order.
Below, we give is an example of summing two vectors with positional coordinates
gx=.12033 and gy = .02102 (the respective Cartesian coordinates x = (0.59375,
0.34375), y=(0.125, 0.28125)

12033 - g
®  02102-gy
10131 - partial sum
o J Y .
2 2 -carries
T AN 1 e o o D o es  vdve= (O TIRIS 0625
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Multiplication of 3 vector by an integer, Let y = nx, where n is a positive

integer. The rule for determining the positional coordinate gy=jj...jm as a function
of n and gx=.i...im is to be found (denote this as gy = n*gy).

Let us replace multiplication by the sequential addition of n vectors x and use
the addition rule obtained (2.4.6). Suppose that 0 < n < k. Then n*i; contains not
more than two k’-ary digits, and, for any #=1,...,m, one can obtain:

p _ 2 -
n*ig=k" Y KTCknxt)) + X KT ) moa (2.4.7)
g=1 q=1

In particular, 0*ir= 0, I*i; =iz, k*is = k"is = if0.
For example, for k=2 and two-dimensional space we have from (2.4.7) the
following table of multiplication of positional coordinate digits for a number

0<n<2
. i
n*i
0 2
0 0 O 0
n 1 0 1 2 3
2 0 10 20 30

Using (2.4.7), it is easy to obtain the formula for the multiplication of
positional coordinates by an arbitrary integer n = 0. For this, let us factorize n by
orders of k:

[73

n= > ku_ln[l]

i=1

, where 0<nfl]<k. Then,
u - u I
n*it=l®1((ku nfl))*i)= & LY nf1) %)

u
Taking into account that gx=is...im= ® k° tit, we have
=1

moo meoo™m sl
ntit=n* & kK'i= @ k' & L Venfiyriy, (2.4.8)
=1 =1 =1

where the operation nfl]*i is accomplished according to (2.4.7) or the equivalent
multiplication table. The relation (2.4.8) is completely analogous the usual
multiplication of two numbers, but the operations + and @ are replaced by & and
*, respectively. Below, we give an example of multipling a two-dimensional vector
x=(0.09375, 0.3125) having a positional coordinate ¢+ = .02102 bv an inteeser
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number 3 (k=2):
02031 - g«
(a2 - n
2031
® 2031
23221 - product gy=n*gx < nx=(0.28125, 0.9375).

Scalar product of vectors, Let a=(x,y). We require to find a rule of calculation a
using positional coordinates gy, gx of the vectors x and y (designate a=gx ®gx).
According to the definition:
a=(x,y)= ﬁ: P
g=1
Using (2.4.2) one can write:

i O = ((i S (Y kYD)
r=1

g=1 g=1t=1

m
=§ ﬁ (k—(r+t) 2 xq[tbﬂ[r]).
t=1

Let us consider the expression in brackets

i Aublrl = xyIr)=ir @ jr (2.4.9)
g=1

This depends only on the component values of the vectors x/t], y[r], rather
than on f and r. Thus, the rule of the scalar product of K -ary digits i; and jr,
corresponding to the vectors x/t] and y/r], is the same at any ¢, r= I,...,m. We call
this rule the positional coordinate digit multiplication rule. The relation (2.4.9)
shows that to obtain the product i ®j it is enough to carry out binary logic
multiplication i by j and then to calculate the number of units in the product. In
particular, for the two-dimensional space, and the decomposition base k = 2, we
obtain the following multiplication table:

i®] !
0 1 2
0 0 0 0 O
- 1 0 1 0 1
] 2 0 0 1 1
3 0 1 1 10
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As the result of this multiplication is an ordinary number, it then follows from
(2.4.9):

m m
a=g Qgy= > > k"o,

r=1 t=1
i.e. the operation “®” of the scalar product of vectors represented by positional
coordinates is the usual number multiplication, but using the digit multiplication
table described by (2.4.9). Further, an example is given of the scalar multiplication
of the vectors x=(0.75, 0.625) and y=(0.125, 0.625) with positional coordinates

(2.4.10)

gx=312 and gy=.203:
312 -gx
® 203 -g
1011
101

0.0111112 - product gx ® gy=(x,y) = 0.484375.

Projection of a vector into a coordinate subspace. Let y be a projection of the
vector x=(x1,...,xp) into a (p-1)-dimensional subspace, i.e. y = (yl,...,yp_l) =
( xI,...,x"-I, x"H,...,xp ). The positional coordinate gy=ji...jm is to be found using
&=il...im and g (denote this as gy=gx/n). ’

It follows from (2.4.2) that:

& -t
y=, yltlkk 7,
=1

n+1

where y[t]=(x1[t],...,x"-I[t],x [t],....X°[t]). Then,

p—1 7 —g—1 n—-1 —a—1 _
a= 2T = X e+ ﬁ 001
g=1 g=1 g=n+1

=BG ) 4 () mod 77 (2.4.11)

where “+" denotes exact division'’. The result of the operation with a digit ir does
not depend on the number t of this digit position. Thus, (2.4.11) describes the rule
of projection for an arbitrary kP-ary digit of the positional coordinate. Applying
(2.4.11) for each digit of gx, we obtain the result gy=gx/n:

m
8y = E

t=1

KPP ikl + (ithmod 7).

1) This unwieldly expression is one other than the elimination on n-th k-ary order from iy
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In particular, to project a three-dimensional discrete space into a
two-dimensional space (with a k=2 decomposition base), the following table of
results can be obtained (n is the number of eliminated Cartesian coordinates):

. i
j=iln
0 1 2 3 4 S 6 7
1 0 1 2 3 0 1 2 3
n 2 0 1 0 1 2 3 2 3
3 0 O 1 1 2 2 3 3

Below is an example of the projection of the vector x = (0.75, 0.625, 0.5) with
the positional coordinate gy=.712 into a two-dimensional space having axes x' and

3,
X

712/2=.310=(0.75,0.5).

If the projection of a vector into a (p-¢)-dimensional subspace is required, then
the operation “/” should be applied sequentially ¢ times in decreasing order of the
deleted Cartesian coordinate axis numbers (in order that the remaining axis
numbers are not changed), for example:

712/3/1=.301/1=.101=(0.625).

The relations (2.4.6)-(2.4.11) determine the main vectorial operations with the
positional coordinates of multidimensional discrete space cells. This means that all
other vectorial operations (for example, distance calculations in multidimensional
space, matrix operations, and so on) can be expressed also by the transformation of
positional coordinates. It should be noted that to do this, it is necessary to apply the
main operations to the vectors having both an integer and a fractional part and an
arbitrary sign of each component.

To do this, let us introduce into a positional coordinate an integer part

determined by the same rules as the fractional part and placed before the point.

Then the operation * can be used for the multiplication of the positional coordinate
by an arbitrary large number. Let also the positional coordinate have a number of
digits in the fractional part which are not fixed beforehand (i.e. let the cells have an
arbitrary decomposition number), then the operation * can be used to multiply the
" positional coordinate by a number « with both an integer and a fractional part
according to the same rules. By analogy, the sign of a positional coordinate can be
introduced.
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Thus, operations with positional coordinates are similar to operations with
ordinary numbers (scalars). The difference is that instead of k-ary digits, all
manipulations are made with K -ary digits - the corresponding cell numbers of
discrete space. The rules relating to the manipulation of these digits are new. All
the operations with digits are “local” and can be performed in parallel; their result
being independent of the digit position in the positional coordinate. The basic
result is that irrespective of the space dimension, all operations are carried out with
scalar values (positional coordinates); only the notation base (or the length of the
binary representation of every digit) is changed.

2.5. The Representation of Images with
Pyramidal-Recursive Structures

The concept of an information field is a convenient abstraction for the description
of digital images of different types. It can be specified by establishing a
correspondence between two bounded sets: X - the domain of the field definition,
and S - the set of field characteristic values, which is called brightness or color.

We consider X as a p-dimensional discrete space (p=/ corresponds to a
one-dimensional signal, p=2 - to a “flat” image, p=3 - to a three-dimensional
image).

In accordance with the characteristics of the set S, let us introduce the
following classification of information fields (the most frequent cases are
represented):

1. Black-and-white graphics or binary image - there are only two brightness
levels, i.e. S={0,1}. An example of such an image is a drawing, or a solid body in a
three-dimensional space. The value “0" corresponds to the background or is
interpreted as “void", the value “1" means an object (pattern).

2. Color graphics. There is an unordered finite set of colors which are different
identifiers of the domain elements, i.e. S is a scale of names. Examples of color
graphic images are a placard, a geography map, etc.

3. Greyscale image. There are k" ordered brightness ranges, i.e. S=Dn1 is a
discrete scale of ratios. An example of such an image is an image on the greyscale
display.

4. Color halftone image. There is a discrete color space, where each coordinate
axis corresponds to the intensity of a certain color, i.e. S=D, . Examples of such
images are a color TV-image (¢ = 3) or a multispectral image surface received from
remote sensor (g=3 - 10).
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Let the domain X of an information field be a p-dimensional unit hypercube
D”. Construct on this a dynamic discrete space D? as a set of discrete spaces
D’y,...,DPm. In this case, a regular ¥ -ary tree is brought into correspondence to the
field domain, the nodes of which have a one-to-one correspondence to the cells of
the discrete spaces D/JP...Dn. Each node is marked by the number of the respective
cell, then the node can be identified by this number or by the positional coordinate
of the cell (2.2.3) which is uniquivocally related to the number.

An important aspect relates to filling the constructed structure with data. The
brightness or color values of the information field correspond to N=kP™ elements of
the lowest structure level (tree leaves). It is necessary to find, for every structure
node of the levels #=1,...,m-1, the brightness (color) value characterizing a set of
descending elements of the initial field and probably the nearest cells. We denote
this brightness (color) value compared to the structure node by s with an index set,
showing the cell position in the multidimensional discrete space.

Depending on the need, two different index sets for “s” are used below: one
for the identification of the cell by Cartesian coordinates, the other - for indicating
the positional coordinate of the same cell. So, the expression Stjj.... jp means that s
characterizes the brightness value in the cell of the #-th level in the j;-th row, in the
j2-th column, in the j3-th layer, ... of Df ; while s(i;...ir) means that s characterizes
the cell d(ij...i)eD{ (Fig. 2.8). Let us suppose that the correspondence of these
two index sets, giving the location of the brightness elements, is specified by the
known dependences

if...ig= Qt(fI}m,J'p)
jI’”,,jp = Qt- (i]...it),

where =1,...,m; i=0,...,k’-1; h=1,....t; ji=1,....,k; n=1,...,p; which enable the cell’s
location to be found in the multidimensional discrete space by its number, and vice
versa.The mapping Qr is nothing but a description of the enumeration law of the
t-th order cells or a law of multidimensional space scanning (Section 2.3).

Suppose that, for some initial image, a recursive structure is constructed and
filled by data, i.e. all brightness values compared to the tree nodes are found.
Then, we obtain a set of m images, each of them refining the image of the upper
level. These are converge to the initial image with increase in the level number.
Such a structure for image representation is known as an image pyramid. Each
image of the pyramid corresponds to one structure level. Each structure node with a
number ij...ir of the ¢-th level with its brightness (color), we call a brightness
element of the ¢-th level or a pixel of the #-th level from the pyramidal-recursive
structure. For pixels, we use the same denotations as for structure nodes.
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Let us consider how the brightness value of a ¢-th level pixel s(il...it) can be
determined. This pixel is a characteristic of some local domain of the initial image
which can either coincide with the ¢-th order cell d(i;...it) or exceed it in size by
overlapping the neighboring cells. The general approach to the determination of the
s(ij...ir) problem is as follows ([146 ] . Subject the initial p-dimensional image tc
the action of some “roughening” operator, for example, a low-pass filter. Then, to
obtain the (m-1)-th level image from the pyramid, the “roughened” image is to be
discretized into k © (m-1) elements, and then the brightness scale is to be quantized
into a given number of levels.

To obtain pixels of the ¢-th level image, the same process is carried out for the
(t+1)-th level image. Convolution of each level image with bell-like window
functions [34 ] are sometimes used as a “roughening” operator for greyscale images
(analogously to the procedure for time series fitting), for example:

r r
t t+1
SJl/p = 2 2 w(ll,~~,lp)Skj1+11...kjp+lp (2.5.1)

h=~r Lh=~r

where w(l},...,1p) is a window function which is even all over the arguments with

> Y wledp)=1;

h=-rl=-r
outside the segment [-r,+r] the function equals zero, while, inside it, it is positive.

If the window size at the (7+1)-th level image fitting exceeds the t-th order cell,
then the value in (2.5.1) becomes dependent not only on the brightness values of
the directly subordinate cells of the (#+1)-th level, but also on the neighboring
elements of these cells. Figure 2.9 illustrates this case for k=2, p=1, when each pixel
depends on four pixels of the lower level. Note that the structure of the brightness
calculation (dotted lines) remaining recursive is no more a tree, but a lattice. Some
authors refer to this as a grid, and call this structure an interleaved or overlapped
pyramid [3, 43 1.

However, it is more often considered that the window function is of a size
which coincides with that of the cell of a previous decomposition (in this case, the
data structure and the calculation structure coincide). The brightness of a pixel is
determined in this case by the relations:

{ $(ifeeeit) =5 jl...jps (2.5.2)

s(if..ig) = F(s(iy...if0),...,s(i}...itkp-1) ),

where (j1,...,jp) = Q[I( is...ir), which, in short, describe the pyramidal-recursive
representation of an image. The way of calculating the brightness of a
node-ancestor the known brightness S(i]...0t+1),

s(i1...ir) using values
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it+1=0,...,kp -1 of nodes-descendants, which are later called subordinate nodes,
depend on the character of the problems being solved, image type, etc. Different
authors determine the function F as an average, median, minimum or maximum
value of the subordinate pixels [92, 123, 142].

We take the average value of greyscale image elements as an F function, as the
average value minimizes the mean square error of approximation the values
s(i...lH+1), it+1=0,...,kp-1 by the value s(ij...it):

-1 )
S (s(ir..-ir) = s(ir-..isir+1))” > min,
i+ 1=0
-1
i s(ir.i) =k sir..it+1) =
ir+1=0
-p(m-t) ! Kol .
=k S X s(ite.dm) (2.5.3)
i+1 in=0

This expression can be rewritten in another way using indices which give the
Cartesian coordinates of a cell d(ij...im):

m—t
k(i+ D=1 k(p+1)—1 K (pr1)-1
t - t+1 —-p(m—t m
Sjr.jp = k ’gj Siy..iy = k p(m=1) Siy....ip
li=kj 1p=kjp lp=km_tjp

(2.5.4)

The values s(iy...it) = Smj],,, jp are pixels of the initial image at the lowest level.
Thus, a pixel of the t-th level is the average of its subordinate pixels of the h-th
level for any A=t+1,...,m. Note that the choice of another approximation criterion
might lead to another function F, for example, in minimizing an absolute error, F
turns out to be the median, and in the case of the Chebyshev criterion (minimizing
the maximum error) F is half the sum of the maximum and minimum elements of
{s(i1...ir+1), it+1=0,kp -1}. The preference for the mean square error criterion is
explained not because it excels over other criteria, but by a tradition established in
signal processing, the convenience of analytical transforms, and the possibility to
compare results with those of other authors.

For a binary image, the brightness of the initial field elements have one of two
conditional values, 1 or 0. The pixel of the z-th level can also be determined in this
case according to (2.5.3) or (2.5.4). However, it is considered more often that
s(i1...ir) can have three values
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Fig. 2.8. The identification of data structure using (a) Cartesian coordinates,
(b) and positional coordinate.
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Fig. 2.9. Overlapped structure.

0, if s(i1...iti+1 )=0
for all it+1=0,...,kP-1,

sCitiv= 11, if s(i1...ixige1 )=1 (2.5.5)

for all it11=0,...,kP-1,

L U, in other cases.

Here, U means that among the descendants of s(ij...iz) there are elements
having a different brightness. The value “0" is usually interpreted as “background”
or “white”, the value “1" as a "figure” or “black”, the value “U” as “uncertain” or
“grey”. Descendants of a node with brightness “0" or 1" are usually omitted
(truncated) as they evidently have the same brightness (Fig. 2.10). Such
incomplete trees with a decomposition base k=2 have special names: quadtree or
quad-tree for p=2 [45, 701, oct-tree or octree [73, 87] for p=3 and hyperoctree or
2P-tree [50, 73] for p3. It is easy to see that all the leaves (terminal nodes) of
quad-, oc- or hyperoctree have a brightness “0" or ”1" and all nonterminal nodes
are grey.

The same can be done for the representation of color graphic images. To get
the color of the 7-th level node, “voting” of colors compared to subordinate nodes of
the (t+1) decomposition is usually carried out. The color occupying the greater area
is transmitted to the f-th level [123]; if all subordinate structure nodes are of the
same color; they are omitted, i.e. the tree becomes incomplete, as is the case for a
binary image.

The representation of a color halftone image can be based on a color space
representation by a pyramidal-recursive structure. It is shown in Section 2.4 that
superimposing the recursive structure on a multidimensional space enables space
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Fig. 2.10. Representation of a binary image by a quadtree (pyramidal-recx;rsive
structure for p=2, k=2, and §={0,1,U}.

cells to be identified using the positional coordinate having features similar to a
number in the &’ -ary notation. Let us represent a multidimensional color space
where each coordinate axis corresponds to a certain color (or, for example, to one
of the spectrazonal channels) by the dynamic discrete space D q, Then, each point
of the color space is given the positional coordinate which defines its belonging to
cells of all decompositions, from the first to the n-th (consider the number of
distinguishable gradations in each color to be equal to £"; usually &=2, n=3-8).

Now, instead of a point (vector) of a multidimensional color space, each image
element will be compared to a one-dimensional positional coordinate (scalar);
hence, we come to the case discussed above of a-black-and-white greyscale field.
This representation can be easily interpreted: taking the z-th level image from the
pyramid, we obtain an approximation of the initial image, where each color has 4
gradations (but not k" as in the initial case).

The most important result which follows from the reduction of the vector, to
the scalar, field is the possibility to process color images in the same way as
black-and-white images, which is possible due to the properties of the positional
coordinate described in 2.2 - 2.4. For example, taking a quasi-continuous
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Peano-Gilbert scan as a way of enumerating color discrete space cells, we find that
close brightness values (black-and-white characteristics of the reduced image)
correspond to points close in the color space, or similar color tints. To a certain
extent, the opposite is true: close brightness values correspond to close color tints
satisfying the conditions (2.3.2). In particular, this enables effective algorithms of
color halftone image coding and compression [127, 128] to be constructed.

Operations with positional coordinates, introduced in Section 2.4, make
possible the processing of brightness values obtained by the reduction of color
images in a way quite similar to that used for greyscale images. The only difference
is that the summation and multiplication signs of the brightness samples are
changed by the signs of the respective operations with the positional coordinates for
colors. The possibility of a combined representation of a color halftone image, when
both the image domain (p-dimensional space) and the intensity scale
(g-dimensional color space) are structured, is based on this fact.

Let us first reduce the color image to a black-and-white image, comparing each
domain element not with a g-dimensional color vector, but with a one-dimensional
positional coordinate. Then s™j1...jp is not a vector, but a scalar (pixel) expressed
by the positional coordinate of the color space cell. Second, let us represent the
image domain itself by a recursive structure. While filling this structure by data
according to (2.5.1), it is necessary to take into account that Smj]...jp is not an
ordinary number but a positional coordinate, therefore, the operations signs in this
expression are to be replaced:

r r
SJt'1-~/'p= ® ®  wli,...lp* S;c}-l}{-il...kjp+ip Jt=m-1,..,1.
hi=—r lp=-—r
Instead of (2.5.3), for the same reasons we have:
kp—1
s(il i) =kP*( ® s(iL..ifr1)), (2.5.6)
it+1=0
Thus, all brightness values s(iy...it), it = 0,...,kp -1, t=1,..,m-1 (as positional
coordinates, of course) at all structure levels can be determined, or a
pyramidal-recursive representation of the halftone color image can be obtained.
Similarly, it can be considered that the processing of color images is also
reduced to the processing of greyscale images with the replacement of the
respective operations with numbers by operations with positional coordinates.
Therefore, the case of a color image will not be further discussed separately.
Thus, the main types of the information field described can be presented
based on a pyramidal-recursive structure, with the method of calculation of pixel
values being different for different types of images.

Chapter 3
PYRAMIDAL IMAGE MODELS

This chapter considers the main properties of pyramidal-recursive image
representation. Attention is paid to preserving the initial image properties at the
upper levels of the structure. It makes possible the approximate solution of
problems requiring the analysis of considerably less data.

In the first section of this chapter, the interrelation of the pyramidal-recursive
representation and some widely used orthogonal two-dimensional transforms is
considered. The property of energy concentration at upper levels of the pyramid is
presented.

The second section describes theoretical and experimental research into the
pyramidal model of a greyscale image. An image is simulated by a separable
Markov field. This model provides estimations of the capacity and computational
complexities of the representation. It is used in subsequent chapters to forecast the
accuracy of results of various image processing algorithms using pyramidal-
recursive structures.

The third section presents analogous results for the model of binary images.
Two kinds of simple images - “spot” and “line” - as well as a model for complex
images, are considered.

The results of this chaptei nave been published in [11, §3, 54, 57, 601].

3.1. Comparison of Pyramidal-Recursive
Structures and Two-dimensional
Transforms

The comparison of a new way of representing data with those already existing helps
to establish its advantages and disadvantages. It is also useful to be able to use one
form or another depending on the problem.
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Comparison of the pyramidal-recursive representation with Hadamar
transforms can be easily illustrated using a graph of fast Hadamar transforms.
Figure 3.1 shows the graph of one-dimensional transforms (p=1), for the case m=3.
The nodes and edges of the tree shown by the solid line are just a graph of a
one-dimensional pyramidal-recursive structure. The corresponding brightness
values are calculated (with a accuracy of the normalization factor) at these nodes.
As one can see, these values are used to a large extent to calculate the coefficients
F(2) - F(8) of Hadamar transforms.

In the general case, provided the pyramidal-recursive structure is constructed
already, it takes

m—1

K=NlopN-N3 27° = N(logN-1)
t=0

operations to calculate the transform coefficients using fast algorithms.

It is of importance, in this case, that the pyramidal-recursive representation
reduces the number of operations so as to determine only the high-order
coefficients, i.e. those which have the greatest values. Thus, to calculate the first
2" < 2™ =N coefficients it is sufficient to perform

K;=Ni(logaNt - 1)=2'(loga2" - 1)=2(-1) (3.1.1)

operations. Since the multidimensional Hadamar transforms are separable, for
transforms of an information field of arbitrary dimension p, instead of (3.1.1), we
have:

Ke=2"(t-1)P;

that is, 2Pme 2Py 2°-1)) operations less than for fast Hadamar transform for
obtaining the same coefficients.

The results can be repeated for some other orthogonal transforms also.
Without actually presenting this, we illustrate this point for Haar transforms, using
the graph of fast Haar transforms for p=1, and m=3 (Fig. 3.2). Haar coefficients
also can be obtained from the values of the pyramidal-recursive structure for the
initial sequence sJ,...,ss. The solid lines in Fig. 3.2 indicate once more the
intermediate calculations performed for the construction of the pyramidal-recursive
structure. Haar transforms coefficients are calculated by performing only two
operations per coefficient with the values of the structure pixels .

Thus, the pixels from the image pyramid are strictly connected to Hadamar
and Haar transform coefficients. However, the transform coefficients characterize
integrally the whole image, though pixels of different levels characterize image
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Fig. 3.1. Graphs of Hadamar transforms and a pyramidal-recursive structure
(bold lines).

H(1) H(2)

T

Fig. 3.2. Graphs of Haar transforms and a pyramidal-recursive structure
(bold lines).
fragments of different size and can be interpreted as transforms coefficients (or
their linear functions) for image fragments.
The expressions which enable to go from the values of the pixels of
pyramidal-recursive structure to the values of Hadamar transform coefficients and
back again are given in [57].

For the one-dimensional case, we have

F(0)=VNs3

VN M1, L
F(u)=>F 20 sH=1y0E), (3.1.2)
=
where 27 <u<a® M=2' 1=2™1
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m—1
ayuw) = 3 jlilu Im—il+[m=i=1Dmod2 + u [m—1],
j=0

and where u/i] and j[i] are the i-th bits of the binary representation of u and j. It
follows from (3.1.2) that each t-th level of the pyramidal-recursive structure
enables the determination of coefficients of 2 high-order Hadamar transforms
H-I As for the previous ( t-1)-th structure level,
1 can be determined,
=1 coefficients

having the values u=0,..
Hadamar transform coefflc1ents with numbers u=0,..
then the transfer from the (t-1)-th level to the t-th level ylelds the 2
with numbers u=2 ,...,2 1.

For the first 2! high order coefficients F(u) pixels Sjt, j= 0,...,2t-1 are, as can be
seen from (3.1.2), an initial signal. Then, according to the Parceval theorem,

t

2-1 2-1
S (F@)? =3 ()
u=90 u=0
Hence, the energy falling upon the -th level of the structure equals the energy
corresponding to 2 high order Hadamar transform coefficients, or, which is the
same, the mean square error of the numerical sequence (one-dimensional image)
approximation by the ¢-th level image from the pyramld equals the mean square
error of this sequence restoration with the use of 2 high order Hadamar transform
coefficients.

The one-dimensional reverse Hadamar transforms in this case can be written

as:
1 221 a(jL,u) m-t
=y 2 Fw (0777, =27 (3.1.3)
n=0

This shows that for determining the structure element s,'t it is necessary to
know only 2 high order one-dimensional Hadamar transform coefficients.

As the multidimensional Hadamar transforms are separable and can be
performed as p sequential one-dimensional transforms for each of the Cartesian
coordinates, the relations (3.1.2) and (3.1.3) are easily generalized for the
p-dimensional case.

For direct transforms one can obtain:

M1M1

qUrL,---sjpL,tan,.. Up)
F(ul,...,up) = v 20 Zosh & (=1) UrLereeesfpLtinye--itp),
h= lp_'

where 27 <u<2')

T eeacrarcaa francfnarmoe arae Aoerrihead ace
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The reverse transforms are described as:

M-1 M-1

Sloio = g o3 Flttlyeryitp) (=T lplotie i)
\/——u1 =0 up=0

The mean square error of an image approximation by the ¢-th level image from
the pyramid, as well as in the one-dimensional case, equals the field restoration
error using 2" “left-lower” Hadamar transform coefficients with 0 < ui< 2t,
FE1,...,p. In particular, for a two-dimensional field of 2Mx2™ pixels, the energies
corresponding to sequential levels of a pyramid structure equals the energies of
Hadamar coefficients found in the shaded zones of the transform matrices, Fig. 3.3.
Thus, pyramidal structure as a whole exhibits such an important property as
energy concentration in upper levels.

Now, let us consider representation at each level which is determined by the
properties of the respective scannings or ordering of pixels. Let us show that if a
two-dimensional image of each level is scanned by a recursive quasicontinuous scan
of the Peano-Hilbert type (Section 2.2), then such a pixel sequence acquires some
statistical features of a two-dimensional field. Let us consider for this correlation
functions and power spectra of both the initial two-dimensional and the
one-dimensional signals obtained after scanning. Coincidence of their properties
will indicate that integral transforms on an image (or on each level of the ’pyramid
of images) can be performed using a one-dimensional sequence of pixels, but not
the initial array.

A wide class of images can be described using a Markov model. It is considered
in this case that correlation between two pixels in a row (column) depends only
upon the distance d between these elements and equals rd, where r is a correlation -
coefficient between neighboring elements. As is shown by experiment [102], the
real images have correlation coefficients r over rows and columns which are in
agreement with the Markov autocorrelation function for the range r=0.9 - 0.97. Let
us consider a two-dimensional separable Markov field for which the correlation
coefficients of the neighboring pixels along the rows and columns are similar. The
correlation matrix for a row (or column) of a Markov image is:

2 * VN-1
1 r r e 7
vYN-2
r 1 r r
W= . . . . . . , (3.1.4)
VN-1 VN-2
r r 1

where VN = 2™
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Fig. 3.3. Energy at each level of the pyramid structure equals the energy of
a certain zone of the Hadamar transform coefficients matrix .

Let us scan this field into a one-dimensional sequence of brightness samples by
two methods: the Hilbert scan and the TV-scan, denote these sequences as ug(T )
and u(T), T=1,...,N, and find their autocorrelation functions.

For the sequence uW T) the correlation matrix (i.e. the direct product of the
u T) sequence considered as a vector by itself) is:

w o ow oL Ay
i 11 -
Ky= wolw L ,
| Lol
Ay Ll W

where W is determined from (3.1.4) [60].
To estimate the 7-th sample of the autocorrelation function Ry(7), =0,...,N-1
it is sufficient to average all elements of Ky situated at a distance 7 from the main

diagonal:

Ru1) = ARk 1) (VN -c e o)V ) (N,

where 1=0.... N—1, A= entierG/NN), C =1—hVN.

ot ooy
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An estimation of Ry(7) can be obtained by calculating Q(r) - the average
Hamming distance between elements of a multidimensional array with the distance
T in a one-dimensional sequence uy(T):

Ru(T)= rQ(r).

The upper boundary for Q(7) is given by the expression (2.2.2), but following
the way used to derive this expression (see [9], p.48), the average value of the
distance Q(t) = 1.1Vt can be found with a large enough value. Then one obtains

Nt

Ru(t) = rl’

0 100 20 T
Fig. 3.4. Theoretical (solid lines) and experimental (dotted lines) autocorrelation
functions of an image scanned by Hilbert Scan (1) and TV-scan (2).

Figure 3.4 shows graphs of the functions Rg(t) and R\t ) for the Markov field
of 128x128 elements with r = 0.95. The same graph shows similar autocorrelation
functions for the real image of 128x128 elements with 256 grey levels and
correlation coefficients in rows and columns equal to 0.954 and 0.945, respectively.
The first conclusion to be drawn based on this graph is that the Hilbert scan is

much more efficient in so far the preservation of correlations of pixels is concerned.
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The exponential decrease of the autocorrelation function Ry(7) with the exponent
index vT (but not t) shows that the one-dimensional sequence up(t) has actually
the statistical features of a two-dimensional array. Really, if the vicinity contains 7
elements in a two-dimensional Markov field, then the correlation coefficient
between the central element and that on the boundary approximately equals rﬁ;
just the same takes place for a one-dimensional Hilbert scanned sequence. The
second conclusion is that the theoretical Markov model agrees well with real
experimental data.

F(n)
1.0

0.5

o

0 20 40 60 80 n

Fig. 3.5. Theoretical (solid lines) and experimental (dotted lines) power spectra of
an image scanned by Hilbert scan (1) and TV-scan (2).

Figure 3.5 shows graphs of energy spectra obtained by Fourier transform of
autocorrelation functions shown in Figure 3.4. It is evident that the energy
concentration rate at low frequencies is higher for the sequence ug(T). This
concentration rate is rather close to those resulting from a calculation of the
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two-dimensional energy spectrum of the initial image (compare the curves shown in
Fig. 3.6).

These curves show a dependence of the residual dispersion (initial image
restoration error) from a number of the Fourier transform coefficients used in the
reconstruction. In the first case, n high order coefficients of one-dimensional
transforms of the sequence up(T) have been taken; in the second case, n
coefficients have also been taken, but representing a nxn zone of the highest energy
coefficients of a two-dimensional transform.

Thus, it can be concluded that the pyramidal-recursive structure, having level
elements being ordered by a quasicontinuous recursive scan, yields integral
(energy) features of images as good as the well-known two-dimensional transforms
used for image processing.

I
2

1 3 5 7

Fig. 3.6. Error of image restoration depending on the number of coefficients of:
two-dimensional Fourier transforms (1); and one-dimensional Fourier
transforms along the Hilbért scan (2)




68 IMAGE REPRESENTATION AND PROCESSING

3.2. The Model of Greyscale Image

A Markov model of an information field is often used in image processing [102]
making possible the qualitative and sometimes quantitative theoretical analysis of
methods and algorithms being developed. This section deals with the
pyramidal-recursive representation of a separable p-dimensional Markov field. As
is shown below, the results obtained are in agreement with experimental data; they
are of importance for image coding and image transmission algorithms (Chapter 4),
and fast template matching algorithms (Chapter 5).

Let a p-dimensional greyscale image (Markov field) be represented by a
pyramidal-recursive structure as described in Section 2.5, with the ¢-th level pixel
being the average value of its direct descendent pixels of the (+1)-th level, i.c. the
condition (2.5.4) is satisfied. Considering the brightness of each pixel of an initial
image to have a random value, suppose, that dispersions of the pixel’s brightness
are known, which are equal to each other and equal to some value D. The
correlation coefficient between the brightnesses of neighboring pixels is also
supposed known, and to be independent of their position and equal to r. Let us find
the dispersion and the correlation coefficient of the ¢-th level pixels.

Let us analyze first an elementary cell of a structure at the m-th level and then
summarize the results obtained. Denote subordinated pixels as sj,...,skp, and their
average value as sg (Fig. 3.7). Find the dispersion of so (denote it as Dp). Taking
into account the known theorem relating to the dispersion of a sum of random
values and the fact that D(s;)=D for i=1,...,k”, one obtains:

_ .2 ¢ ' K (si,s, _ D £ & o
Dp=k (i; D(s; )+2Di§<jj W—?s/_; % igl ,21 r(sisp)  (3.2.1)
where K(s;, sj) is the correlation moment of values s; and sj, and r(s;, s;) is the
respective correlation coefficient. It is known (see [102], for example) that for the
Markov field r(’s;, s;) depends only on the correlation coefficient » and the distance
between the elements s;, 5. Taking this into account, one can find D,.

For a one-dimensional Markov field r(s;, sj)=r 1 the calculation of the sum in
(3.2.1) is equivalent to summation of the elements of the matrix:

1 r A
r 1 ro 2
A 1. A3
A1 A2 1
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and the sum can be rewritten in the following way:

qOX i _ e 1—r . 1=/
2 Z r "22 (k—l)" +k= kT:r- - 2]"—_—2 (3.2.2)
i=1 j—l i=1 1 r
Substituting (3.2.2) into (3.2.1), one finds for p=1:
2 k
D= D(k(1—=r")=2r(1-r")) (3.2.3)

K(1-r)?

Note 1. Due to (2.5.3), the t-th level pixel is an average value both for
subordinated pixels of the (#+/)-th level and for the subordinated pixels of the
initial image. Therefore, the expression (3.2.3) allows to calculate also the
dispersion of the pixel of level ¢, if we put the value ™ into (3.2.3) instead of k.

So

172...j...n k
f|le 0o---0-c-0:--.-. °
zlee | | )

Fig. 3.8. Denotation for the inference of (3.2.4).

In the case of a two-dimensional field (p=2), it is convenient to rewrite (3.2.1)
as:
Wk Kk kK
Dy=Dk"Y > ¥ 3 r(sijs)
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where s;j and sip are the brightnesses of pixels of size kxk of a two-dimensional

fragment (Fig. 3.8). For the separable Markov field r(sij, sim)=r L+l using
(3.2.2), one can write:
k k k. .
li— 11+ li—nl k)
DI _ D ,l+r 2r(1-r’\2 24
Dr=Dk & j=11=1n=1 k4 (“1_, (1-—r)2 ) (3.2.4)
Generalizing this result for a p-dimensional field, we have
k
Dp=DKP (k”’ _2(er ))" (3.2.5)

I-r  (1-p?

As Note 1 is valid in this case too, the expression (3.2.5) is applicable to the
calculation of the dispersion of a pixel’s brightness at any level ¢, #=1,...,m-1. For
this, it is enough to put K™ into (3.2.5) instead of k. Then, the general expression
for the dispersion depending on the image dimension p, the level number ¢, and the
decomposition base k can be written as:

D(p,k,t)=D

2 a
a(l—r2)—2r(2l—r )]p’ (3.2.6)

a’(1-r)
where a = k™",

Figure 3.9 shows D(p, k, t) as a function of ¢ for different correlation
coefficients r with (@) p=1, (b) p=2, and (¢) p=3. The decomposition base & equals 2
(solid lines) or 3 (dotted lines). The graphs show that images of lower levels from
the pyramid have nearly the same brightness dispersion as the initial one,
especially with a high value of r.

Let us determine the correlation coefficient between pixels of the 7-th level.
The same as for determining the dispersion, first we analyze this problem for two
elementary structure cells. Let us denote the brightnesses of subordinate pixels in
these cells as sj,...,skp and s7’,...,Skp’, and their average values as so and so’ (Fig.
3.10). Then, considering that D(s;) = D(s;) = D and D(sp) = D(s¢’) = Dp, one can
obtain:

p P
M(s05’0) — M(s0)M(s0) 1 & & ,
rp( 50, 50°) = = M(sjs’y) =
? Dyp KD, tgl jgl "
D LK
— M(SHM(S’j)y = ——= (S;,S’)) (3.2.7)
(SHM(S’jy) Dpkzpigl j;l Y,

| k-i-f

For a one-dimensional Markov field r(s;, s/ )=r , putting this value into

(3.2.7) and using (3.2.3), one can obtain:
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r(1=r%?
k(1-r)=2r(1-r%)
In the case of a two-dimensional field (p=2):

D k k k &
rso, s0)=—37 2 2 2 % rsi,spp),
D°k” i=1 j=1 i=1 n=1

ri(so, s0’) = (3.2.8)

where s;j, sjn’ are brightnesses of pixels in two neighboring two—dimensiona} arrays
each of size k x k (Fig. 3.11). For a separable Markov field r(si, sjn’) = i ,
using (3.2.2) and (3.2.4) we have:

i=1 j=1 _ r(l—rk)2

f érli—jl k(1= —2r(1=r5)

r2(so, so’) = =ri(so, s0’).

The same result can be found for the p-dimensional field (under the condition
that two p-dimension arrays of size £x...xk have a common “side” of the order p-1),
i.e. (3.2.8), is actually independent on the dimension of an image. In particular,
with k=2:

rp=r(1+r)/2.

Taking into account Note 1, expression (3.2.8) can be rewritten as an
expression for the correlation of neighboring pixels of the #-th level for any p and
=1I,....m-1:

r(1 —ra)2
a(l-rBy=2r(1-r%’

r(k, t)= (3.2.9)

where a=k"". We shall call the r(k, t) value the inside-level correlation.

Figure 3.12 shows graphs of r(k, t) for different t and r values, and 4=2 (solid
lines) and =3 (dotted lines). The graphs show that low level images from the
pyramid have great statistical redundancy, nearly the same as the initial image.
This proves that images of lower levels faithfully copy the statistical structure of the
initial image making possible their use to obtain an approximate result while
processing the pyramid structure top-down level-by-level.

Now, let us determine the interlevel correlation - the correlation coefficient
between the brightnesses of a pixel of the (-1)-th level s(ij...ir-7) and its direct
descendent at the t-th level s(i;...ir) (denote this correlation coefficient r*(p, &, t)).
Let us consider an elementary cell of the structure (Fig. 3.7):
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g

Fig. 3.9. Brightness dispersion at various pyramid levels: (a) p=1, (b) p=2, () p=3.
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Fig. 3.11. Denotations for the inference of (3.2.9).

£ i
kP 5)— ‘
M(50,51) ~M(s0)M(s) ;1 M(sisj) M(sn)ﬁ})1 M(sj))

r(so, si)= \/D(SO)D(S,') = / \/D(SO)D(Sl)J

kP
-pVvD
= k" UBss 21 r(si,sj)
=
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By averaging over all elementary cells of the same level and considering that s;
is the t-th level pixel, s is the (#-1)-th level pixel, and the index i is of k° different

values, we have:
r™(p, k, t)=M(r(so, si))=

P [
~( Dk o & &
¢ (D(p,k,t—l)) Z jg:l r(si,sj) )

As follows from (3.2.1), the factor in square brackets is the ratio of the

dispersion of the (-1 )-th and #-th levels. Then:



74 IMAGE REPRESENTATION AND PROCESSING

(p, k, t)= (%ﬂ)” (3.2.10)

Substituting D(p, k, t) from (3.2.6), one obtains:

(3.2.11)

r*(p, k, t)=[

ka(1-rD)=2r(1=F"*) 1o
K(a(1-r=2r(1-r")

m-t
where a=k .

1.0+

g

Fig. 3.12. Inside-level correlation against the level number.

Figure 3.13 shows graphs of r*(p, k, t) for different p, k and r values. As the
graphs show, the interlevel correlation is practically always higher than that of the
inside-level (compare Fig. 3.13 with Fig. 3.12). In particular, for k=2 (the most

useful case), (3.2.11) can be rewritten as:

1 (1= ),/2 _ (1+r(2,t))p/z "
r(p,2,t) = |5(1+ = (3.2.12)
(20 (2 ( a(l —r2)—2r(1 —r2)> 2

where r(2, t) is the inside-level correlation determined from (3.2.9). The analysis
of (3.2.12) shows that for p=1, 2, 3, 4 the interlevel correlation is always more than
the inside-level one; for instance, with p=2 and t=m r*(2,2,m)~( 1+r)/ 2. With p>4,
r(k,t) and r*(p,kt) relation depends upon r. Hence, for most useful image
dimensions and decomposition bases, the interlevel correlation dominates, and it is
this that should be used in algorithms of image data compression.
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Fig. 3.13. Interlevel correlation against the level number for (a) one-dimensional,
(b) two-dimensional, and (c) three-dimensional images.

Figure 3.14 shows graphs of D(2,2,t), r(2,t) and r*(2,2,t) plotted against the
level number ¢ = 3,...,7. The solid lines shows the theoretical dependencies
determined from (3.2.6), (3.2.9), (3.2.11) with ~=0.95, the dotted lines indicate
similar dependencies for real images of 128x128 elements with practically the same
correlation coefficients 7=0.94-0.96. As the figure shows, the pyramidal model of
the greyscale image based on a Markov field abstraction provide a good enough
description of the important statistical characteristics of real images represented by
pyramidal structures, the best coincidence being achieved at the most informative
lower levels.

Another characteristic important for further image processing algorithms is the
difference in the brightnesses of pixels from adjacent levels, which belong to the
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Fig. 3.14. Comparison of predicted (solid lines) and experimental (dotted lines)
dispersions (a), inside-level correlations (b), and interlevel correlations (c) against
the level number for two-dimensional images.

same elementary cell. Let us find the dispersion of this difference (Z;), provided

pixels are at the ¢-th and (#-1)-th pixel.
For the m-th level in Fig. 3.7, one can find:

Zm=M(D(si-s0))=M(D(s;) +M(D(s0)) - 2M(M('spsi) - M(s0)M(’s;) )=
i i i i
kP
=D+D(s0)- 2DM((k? 3 r(si.s)) (3.2.13)
i j=1
As i have &° different values, then according to (3.2.1):

3 £ K
M(kP jzl r(si, Sj))‘_'k—zp > 2 r(sj»sj) =D(s0)/ D.

i i=1 j=1

Then (3.2 13) can be rewritten in the following way:
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Zm=D-D(so)=D-D(p, k, m-1).

By similar reasoning, one can get for the t-th level pixels (in this case
s=s(it...it), sg=s(i]...i-1) ):

Zt=D(P; k) t) - D(P, k’ t°1)’

where D(p, k, t) is determined according to (3.2.6). Using this expression, we get
finally for a p-dimensional Markov field:

2=D { {a(l—r)z—Zr(l—ra)] ’ _ [ka(l—rz)—Zr(l—rka)] p}

a2(1-r)? Ka*(1-r)*
where a=k"™". It follows, in particular, from (3.2.14) that
m
> Z; =D.
t=1

Fig. 3.15 shows graphs of Z; (in fractions of the original image dispersion D) as
a function of level number ¢ for k=2, different correlation coefficients r, and image
dimension p. The graphs show that the dispersion of the pixel difference is much
less than that for the initial image. For r = 0.9 the dispersion Z; decrease very fast
with growth of level number, which is an indication of great information
redundancy of lower pyramid levels.. This result is of great significance for image
data compression with pyramidal structures.

3.3. The Model of the Binary Image

The variety of binary images is very large (meteo maps, texts, graphs, solids in
space, etc.), therefore, a universal theoretical model for all types of graphics can
hardly be found. The present section considers the simplest models of a binary
image and describes the experimental results for some image types. Complexity
and space efficiency of truncated pyramidal-recursive structures representing
p-dimensional binary images (quadtrees for p=2, octrees for p=3 or k’-trees for
arbitrary k and p) are investigated. Theoretical models that describe quantities of
grey, black and white nodes at different levels of the structure for several type of
images are presented.

Quad-, oct- and K’-trees have been used for image coding, transmission,
feature extraction, pattern recognition, etc. (see, for instance, [87, 113, 149)).
Available algorithms are mainly based on sequential or parallel iraversing of tree
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Fig. 3.15. Dispersion of brightness difference for pixels of adjacent pyramid
levels: (a) one-dimensional, (b) two-dimensional, (c) and three-dimensional
images; solid lines denote the prediction according (3.2.14), dotted lines -
experimental data for images with 7=0.94 - 0.96.
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nodes, and analyze data connected with these nodes [49, 76, 113 ]. The complexity
of such algorithms directly depends on either the total number of nodes in a tree or
on the number of “black” nodes corresponding to the black areas of an image. If the
number of nodes of each type is known, then the complexity of processing
algorithms and their computational efficiency could be predicted.

Another important task is the image coding and transmission of compressed
image data. Pyramidal-recursive structures provide a high compression ratio in
picture coding and a gradual refinement of the transmitted image during its
reconstruction at the receiving side [44, 76, 123 ]. If the number of nodes at various
structure levels were known for different types of images, then the space efficiency
of k’-trees and reconstruction errors during the refinement process could be
predicted.

Thus, the development of k’-tree models describing quantities of black, white
and grey nodes at different levels seems to be important. The fact that such models
depend on some parameters appears to be related to image properties such as the
square and perimeter of black or white areas, the dimension of the boundaries of
black areas, etc., which are often used as image features. Having a K -tree
representation for a particular image enables the parameters of the model to be
identified, and also the corresponding image features. ’

Let us consider a pyramidal-recursive structure (KP-tree) representing a
p-dimensional binary image of size k" x..xk"", in which every terminal node is black
or white and nonterminal nodes are grey (Fig. 2.10). Let the number of grey nodes
be equal to G. Every grey node has exactly k” descendants in a k*-tree, so there are
in total ¥’G descendants in a tree. Every node is a descendant of some other node
except the root, which means that the total number of nodes in a k’-tree is equal to

M=K G+1 (3.3.1)

To estimate a quantity of grey nodes let us investigate two models of simple
binary images (Fig. 3.16). First, consider a two-dimensional case for k=2.

The image at Fig. 3.16a will be called a “region” and the image at Fig. 3.16b, a
“line”. A line is a discrete analog of a straight line segment (pixels crossed by the
segment are black). A region is a discrete analog of the part of a square restricted
by a straight line (pixels crossed by the boundary are black if their centers are in
the black area).

Suppose a quadtree for a region is constructed and consider a ¢-th level pixel
(cell) which is crossed by the straight line P (such a cell corresponds to a grey node
in a quadtree). This cell consists of four cells of (#+1)-th order (Fig. 3.17a).

Let the projection of a #-th order cell onto the normal to P have a length /, then
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a) b)

J -

Fig. 3.16. Simple images: a region (a) and a line (b).

v /

Fig. 3.17. To the calculation of the average number of (t+1)-th order cells crossed
by straight line.

a the projection of any (#+1)-th order cell onto this normal has a length 1/2. Let us
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build an additional straight line P’ at the distance //2 from P and parallel to it. It is
obvious that every (#+/)-th order cell is crossed either by P or P (a cell can have
one common point with P and one with P but relative quantity of such cells equals
to zero when P is arbitrarily positioned). Thus, two lines cross all cells. Then every
line P or P’ crosses on average half the (#+1/)-th order cells (i.e. crosses two of
them) taking into account possible shifts of P.

From symmetry considerations, it follows that half of the remaining cells are
on the left side of the boundary P and the other half are on the right-hand side.
Thus, a grey node (corresponding to a crossed t-th order cell) has on average 2
grey descendants, 1 black descendant and 1 white descendant (corresponding to
the (#+1)-th order cells which are not crossed by a boundary). Then for the model
of a region one obtains (average values):

gt)=2" b=wiy=2"; =12, m-1; (3.3.2)

where g(1), b(t), w(t) are the quantities of grey, black and white nodes at the ¢-th
level.

At the lowest (m-th) level of the quadtree there are no grey nodes, therefore
b(m )=w(m)=4g(m-1)/2=2". The whole tree has:

m—1 ¢
G= Y 2=2"-1
t=0
grey nodes and the total number of nodes can be obtained using (3.3.1):
M=4G+1=2"723; (3.3.3)

Now it is easy to find the average quantities of black and white nodes in a
quadtree for a simple region:

W=B=(M-G)/2=3*2""_1. (3.3.4)

For the model of the line the above inference is also valid except for the ratio of
black and white nodes. Quadtree of a line has no black nodes at the #-th level, but at
the m-th level every pixel crossed by a line produces a black node. Then instead of
(3.3.4) we have

B=2g(m-1)=2"; W=M-G-B=2""1_2 (3.3.5)

Thus, for simple images the number of nodes in a quadtree increases with the
level number ¢ such as 2’ instead of 2 in ordinary 4-ary tree; the total number of
nodes in a quadtree approximately equals 2m2 instead of the 22'" pixels in an
original image.
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The above consideration for inferring of (3.3.1) - (3.3.5) can be repeated for
an image of arbitrary dimension p and decomposition base k. (For this, k parallel
hyperplanes of dimension p-/ crossing the p-dimensional hypercube - a ¢-th level
cell - should be considered). In this case, one can obtain:

ot)=kKPV =1 .  m-1;
G=kM P,
M=K Pty (3.3.6)

For the model of a p-dimensional region:

B=W = K™P Vb .2 -1)), (3.3.7)

and for the model of a line (in the p-dimensional case - a model of a
(p-1)-dimensional hyperplane):

B=MPD. g o f(mIDap P (3.3.8)

b

Real images contain straight and curved lines, regions, spots, etc. Models of a
simple region and line are acceptable for these images only beginning from some
level number 79, which can be different for different parts of an image. Up to the
level 7p, the majority of nodes in a tree are grey, but, after that, cells of lower levels
can be considered as simple regions and lines. In this case, the following fwo-layer
model of a complex image can be proposed: up to, and including, the level tg all
nodes in a tree are grey, i.e. the number of nodes on the t-th level (t<#p+1 ) is equal
to &° t, but starting from the level fp the models of simple images are valid

t
~%F

“ >~ 1+7

~k (p-1)t

m

Fig. 3.18. The total number of nodes in a k’-tree for the two-layer model.
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(Fig. 3.18).

Certainly, in real images the level tp can be “fuzzy” because of the presence of
different size objects (see the dotted curve on Fig. 3.18) but formally the value fp
can be determined as a point where the border lines of two tree layers are
intersected, the upper layer growing as K" with the level number increasing, and
the lower layer growing as k(p I Insucha case, the 7p value may be fractional.

It can be said that #p reflects the intrinsic detailness of an image: up to this
level objects (spots, curves) retain their individuality and integrity and on lower
levels they appear to be divided into blocks which have no “sense”. One can
suppose the tg value to be an invariant characteristic for a particular class of images
and an indicator or measure of the complexity for this class. Using this measure the
space efficiency of a KP-tree representation and the complexity of image processing
algorithms can be determined.

It is interesting to estimate the fp value for different classes of images. Some
experimental results are given in the literature. In particular, the quantities of black
and white nodes in quadtrees for different images of a size 210x20 have been
calculated in [76 ]. The #p value can be estimated from these data: (1) #= 3./ for a
simple radiochart; (2) fp= 3.5 for drawing with thick lines and black regions; (3)
1p=5.0 for a map, etc. '

Another example can be found in [149] where quantities of black, white and
grey nodes in an octree representing a three-dimensional image of the human brain
are evaluated. For this image, fp= /.2 and the ratio B/ G equals 0.97. Thus, there is
a high similarity to the region model. The results of our experiments with a binary
version of the well-known girl image (Fig. 3.19) are shown in the Table 3.1; for this
image o= 4.1.

Table 3.1. Quantities of different color nodes in the quadtree for the “girl image”.

Color of Level number
modes 'y 2 3 4 s 6 71 8 total
black 0 0 1 7 54 272 1081 4518 5933
white 0 0 0 45 207 631 1614 4750 7247
grey 4 16 63 200 539 1253 2317 0 4392
total 4 16 64 252 800 2156 5012 9268 17572

Theoretical estimations for a two-layer image model with fg= 4./ and
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experimental results from the Table 3.1 are compared on in Fig. 3.19. As can be
seen, the correspondence between theory and experiment is high.

Fig. 3.19. The amount of grey nodes in the quadtree for the “girl image” (a) and in

12, log,&{t) 12 | 1og&(t)
104 / 10 4
Y/
8 8
-
6 6
/
4 a) 4 b)
2 21/
0 s JC°. — O0&— It + +
12 3 4 5 6 7 1 2 3 4 5

the octree for the brain image [149] (b); solid lines - prediction according
two-layer model, points - experiment.

In a two-layer image model the total number of nodes M can be estimated as
K t°Mo, where My is the number of nodes in a subtree having its root at the level 1p,
and ¥ is the quantity of such subtrees (or the number of nodes at the #p-th level).
To find My it is sufficient to substitute m-fp (the height of a subtree) instead of m
in (3.3.6):

Mo= kNP IR ),
We then obtain

M=y -l (3.3.9)

M can be called the complexity of the kP-tree. It determines the complexity of
the algorithms of manipulations with kP-trees. ‘Estimations for G, B, W for a
two-layer k”-tree model can be obtained from (3.3.6)-(3.3.8) in a similar way.

Let us consider an image perimeter estimation with a two-layer model. It is
known [115], that the average number of square lattice cells crossed by some curve
is equal to n=4L/(ma), where L is the curve length and a is the length of a lattice
cell side. It follows from this theorem that, for a large enough level number ¢, the
number of grey nodes at this quadtree level can be employed for the evaluation of
the length L of the boundary between black and white regions. This is just the
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Fig. 3.20. The logarithm of quantity of grey nodes at the ¢-th structure level grows
proportionally to the image dimension p for <tp,
and proportionally to the intrinsic
dimension pg of the boundary of the black regions for £>#p.

perimeter of the object, figure, etc.
L= n2_tg( 0
4 .
If the two-layer k-tree model is valid and the parameter tg is estimated using a
linear approximation of experimental as like in Fig. 3.19, the perimeter can be

estimated, taking into account that for the two-layer model g(¢) = 2"t
2P
L=nT. (3.3.10)

Thus the f#p value is related with perimeter of black regions and may be used
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for its prediction (note, that L is the true perimeter of black regions, measured
before image discretization). The more detailed is the image, the more complex is
their configuration, and the larger is the value L and, hence, #,.

It can be also be shown that a k’-tree representation allows to evaluate the
intrinsic dimensionality of an image (more precisely, the dimension of the
boundary of black regions). If the boundary of black regions has the dimension pg,
the quantity of grey nodes (which determines the space efficiency and the
complexity of the tree) increases for £, in the proportion % independently of the
original image dimension p. Then intrinsic dimension pg can be estimated from the
quantities of grey nodes at levels £1): po equals the tangents of the angle between
the ¢-axis and the straight line approximating logz g(t) experimental points (see
Fig. 3.20).

For instance, a set of uniformly distributed points (ps=0) in a p-dimensional

space produces a 7 -tree, which does not grow in width after some level number; a .

typical two-dimensional “girl image” having a one-dimensional boundary (po=1,
p=2) produces a quadtree in increased the proportion 2" for >ty; the brain image
has a dimension p=3 and the boundary dimension p,=2, so the corresponding
octree grows in the proportion 22t.

Thus, some important image features such as the perimeter or square of the
black areas, the intrinsic dimension of the boundary of the black areas can be
estimated using pyramidal-recursive structures of K -tree type. One can suppose
that for particular classes of images (e.g. for a set of dark particles in a light area)
more complex and accurate models can be developed which allows to estimate other
features related with connectivity, concavity, average size of connected

components, €tc.

Chapter 4

IMAGE CODING AND
PROGRESSIVE
TRANSMISSION WITH
GRADUAL REFINEMENT

Image representation by means of the pyramidal-recursive structures described in
the previous chapters is a means of uniformization of data organization to provide
their storage and processing in a computer. One of the important tasks here is to
reduce the information flow entering the processing system, or compression of the
images to be stored. This reduction can result in a decrease in the complexity of
image processing algorithms and the simplification of some image analysis
problems. The coding and compression algorithms should provide, as far as
possible, a final form of data representation which might be useful for further
processing without decoding or other conversions necessary to restore the initial
data volume.

The existing coding and compression techniques are, by and large, not closely
connected with the processing methods, and the computational complexity of the
latter is determined, as a rule, not by the reduced, but by the initial data volume
[68, 102, 103, 148, 152]. The pyramidal-recursive representation enables image
data compression and processing to be carried out.in a manner which preserves, for
the compressed data, the same structure as for the initial field G.e.,
pyramidal-recursive structure) and a description of processing algorithms based
not on the original image, but on the condensed structure.

The present chapter is devoted to problems of image data compression on the
basis of the elimination of their statistical (or “informaticn” in terms of information
theory) and, to some extent, semantic, redundancy. The first is connected with the
high mutual correlation of pixel values in the image and the presence of
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homogeneous monotonic areas; the second is determined by the problem being
considered and by the means of processing, i.e. it is connected with the problem
orientation of the system which perceives the image and makes a decision.

The first two sections describe methods of image data coding, which are based
on the elimination of statistically redundant elements in a pyramidal-recursive
structure for greyscale and binary images. The algorithms described in these
sections are of interest as they provide rather high compression ratios and preserve
some properties which are important for further image processing or transmission.

Problems of image data transmission based on the level-by-level processing of
an image pyramid are discussed in the third section. This provides a gradual image
“refinement” during its decoding or transmission and enables image analysis to be
initiated, or a decision to be made at the receiving side, before the moment when
the whole data volume is reconstructed or received. This can be interpreted as be
account of the different semantic value of different data elements. Algorithms of
greyscale image coding and their progressive transmission are given in [15, 55,
58 1, while methods and algorithms for binary images are described in [11, 54].

4.1. Coding of Greyscale Images

Different algorithms of image coding, which use pyramidal or recursive
structures for image representation have been developed recently. Two main
approaches to their construction are the decorrelation of pixel values to eliminate
statistical redundancy and the removal of redundant elements corresponding to
image areas uniform in brightness. The first approach was developed in [1, 28, 34,
35, 92, 98 ]; however, exhaustive quantitative models of such algorithms have not
yet been described . The second approach is developed in the papers [17, 70, 80,
87, 141, 1421].

The algorithms of image coding described in the present section combine both
the approaches mentioned, they are based on the decorrelation of
pyramidal-recursive structure pixels, and the elimination of redundant elements.
The coding ability of the algorithms is estimated.

At present, simple, but rather efficient, data compression algorithms which are
based on the calculation and coding of the difference between highly correlated
image or signal elements (delta-modulation, differential pulse coding modulation
methods, etc.) are widely employed [23, 103, 152]. As is shown in Section 3.2, the
most significant correlations in the pyramidal-recursive structure for a greyscale
image are interlevel correlations which, as follows from (3.2.12), in most cases
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exceed the inside-level ones. Therefore, it may be expected that the use of
interlevel correlations enables more effective algorithms to be constructed than the
existing algorithms based on the analysis of neighboring pixels.

Let us use a differential schema for accounting for interlevel correlations. Let
us apply the following procedure to each elementary cell of a pyramidal-recursive
structure beginning with the top level: each node-descendant with the number ;...

is assigned a new brightness value d (ij...ir) defined by the relation
O (ieuit) =58(if..it) - S(ilewrip-1),it = 0,00, kP-1, t=1,...,m.

Then the brightness of each pixel of the original image s(ij...ir) can be
expressed via the brightnesses of the transformed structure, which, in what follows,

is called the difference structure, in the following way:
s(i1 ... im) = so+d(i1 )+...¥O(i1...im), (4.1.1)

where s, is the average image brightness.

It can be expected that the dispersion of brightnesses o (ij...it), t=1,'...,m is
significantly less than dispersions of corresponding brightnesses s(ij...it).
Therefore, a smaller number of digits is required to store the values of difference
structure pixels in the memory as a result of which compression can be realised.

The dispersion Z; of the difference signal o (ij...it) can be calculated using the
expression (3.2.14). It follows from this expression and Fig. 3.15 that this
dispersion for lower levels of the structure is about ten times less than that of the
initial signal. It enables significantly fewer quantization levels to be used for
brightness coding. The latter is equivalent to a volume reduction of the information
stored, so far as the fewer number of bits is required to describe the brightness
value of each pixel of the difference structure as compared to the brightness values
of the initial structure. :

If we would like to decode an image by restoring the pixels of the initial
structure s(ij...iz) according to (4.1.1), an error may appear, which is determined
by the quantization technique of each of the 8(ij...ir) values, t=1,....m and the
number of quantization levels. Let the sign “’” near the symbol designate the
quantized value. Then the mean-square deviation U of the reconstructed brightness
values from that of the original image (assuming the independence of quantization
errors at various levels) is equal:
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U'=M($(il..cim)-S' (i1...im))* =
= M((s-8 JHd(il )-d’ (il ) *..H(d(il...im)-d (il...im)) )2 =

m
=M(s-§ )2+...+M(d(il...im)-d (il...im))2 = E ZE(Y), (4.1.2)
t=0

where Z; is the dispersion of the brightness of t-th level pixels, and E(?) is a
normalized quantization error at the #-th level.

This error is determined by the type of distribution law of value (ij...iz). This
is in inverse proportion to the square of the values of the quantization levels. The
optimal quantization techniques are, in the general case, rather complex, and are
described, for example, in [102, 148]. However, there exist tables of optimal
quantization thresh holds and levels minimizing the quantization error for some
distribution laws (Gaussian, uniform, Laplace, etc.) and for the given number of
quantization levels [85]. Both the level values themselves and the quantization
errors E(t) can be found using these tables and the respective formulae. Vice versa,
given the maximum error E(t), the required number of levels n can be found
(the-so called Max algorithm).

Empirical probability density functions for the values 8(iy...ig), (i...i7), and
8(i1...ig) for the two-dimensional images considered are shown in Fig. 4.1. These
functions can be approximated by a Gaussian distribution density having the
respective dispersion. Therefore, the error arising from the quantization of pixel
values of the difference structure can be estimated according to (4.1.2) using Max’s
algorithm for the Gaussian distribution and the relation (3.2.14) for the dispersion
of the r-th level pixels.

The question arises as to how the minimum volume V of the data stored can
be obtained with the given mean square reconstruction error U. This volume (in
bits) is determined by the formula:

m
V= ktpnt
t=0
where n; is the number of bits needed to store the 6(i;...it) value.

An exact solution of the problem V->min, U = const. is difficult due to the large
number of variables and the complexity of the function being optimized. However,
a reasonable practical result can be obtained applying the following reasoning.
First, almost all the volume of data stored falls on the two or three lowest levels of
the structure. Thus, minimization should be initiated by an examination of the
influence of nm. Second, the quantization error E(t) exponentially decreases with
the linear growth of ny therefore, taking n=5 - 8 for =1,....m-I[(I=1-3), it is
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£, %

Fig. 4.1. Empirical probability density functions of the pixel values for the
difference structure. ’

possible to reduce the contribution of the upper m-I levels into the error to an
insignificant value without any practically increase of the data volume. In this case,
the following simple algorithm can be proposed for the selection of the number of
bits coding the difference signal 5(iy...iz).

Algorithm A4l (U, [, ng). (This algorithm finds the number of the binary
digits nt necessary to save the difference signal o(iJ...i¢) of the z-th level (t=m,...,1)
for a given error level U.)

1. Set Up=U
14+

], set =m.

~

2. For the current Up and ¢, find, using the Max algorithm, (or with tables) the
minimum number of bits n; and the quantization error E(t) for which Z:E(t) < Up.
Set U=Z:E(t). (Ztis determined according to (3.2.14).)

3. If ne>ng, then go to 6, else, go to 4.
4. Set Ug=U-U|, t=t-1.

S.If =1, then go to 6, else go to 2.

6. Set ng=ng for t-1,...,1; stop.
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It is supposed that Z; is determined from (3.2.14) and ng is selected such that
E<<U. The reconstruction error provided approximately equals U, and the volume
of the data stored in bits is determined by the relation

V=Kt P o (P D 48P+ g,

The drawback of the Algorithm A4l results from the accumulation of
quantization errors E(t) of different levels. This negative property can be easily
avoided by the reconstruction of the encoded brightness at each level (a similar
scheme is usually used in differential pulse coding modulation (DPCM)
algorithms). Such a modification of the algorithm is discussed in the next section.

Figure 4.2. shows an example of a reconstructed image after its decoding. The
image size is 256 x 256 pixels, and the brightness scale has 256 gradations.

The second compression mechanism is based on the modification of image
areas with slow changes in brightness for blocks with constant brightness. Note
that, with an image representation by a pyramidal-recursive structure, this
mechanism may be used independently of the elimination of interlevel correlations,
as the brightness of each image block of k x...x k pixels is changed for a constant
value when the difference structure is used. Thus, monotonic image areas remain
monotonic in the difference structure too.

Hence, it may be expected that a definite number of pixels of the ¢-th (<m)
level may be found, the descendant pixels of which at the lowest m-th level have a
very small brightness scattering. All such pixels (corresponding to a p-dimensional
hypercubic fragment of the original image) can be replaced by an average
brightness, the divergence of the transformed image from the original image
increasing insignificantly. In this case, it is sufficient to store only information
about a single pixel of the ¢-th level, which has an average brightness, instead of
information about all pixels belonging to a fragment.

Because of this, the volume of the data stored can be reduced for
n(k’ kP =1y P ) bits, where n is the number of binary digits necessary save a
brightness value. At the same time, the reconstruction error is introduced for the
original image, and is equal to

-1
u= 3 (51 i) —S(i1. ..im))*
i+ 1y sim=0

If this error does not exceed the given maximum value then the node with the
number G=iy...i; is called the terminal. All descendants of terminal nodes may be
eliminated, reducing the volume of the data stored. We call this operation the
truncation of the structure, and we call the resulting structure the truncated
structure.
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a.) b.)
Fig. 4.2. The original image (a) and the reconstructed image with the equivalent
volume of information 4 bits per pixel (b). Coding of the difference interlevel signal
is used. A noise suppression effect can be seen on some smooth image areas.
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Fig. 4.3. The number of terminal nodes at different structure levels depending on
the error threshold.

An interesting problem is to predict the number of nodes in the truncated
structure depending on the given reconstruction error threshold. Unfortunately, it
is not yet possible to find a sufficiently simple theoretical model for this case,
because it is necessary to know the mutual distribution of the brightnesses of pixel
groups in the initial or difference structures. Experimental data obtained for the
two-dimensional image shown in Fig. 4.2(a) and for the structure with a
decomposition base k=2 are given below. Figure 4.3. shows the number of terminal
nodes at the three levels of the truncated difference structure for various error
thresholds. The threshold value is expressed in absolute units — the number of
brightness gradations. For example, with w=500, the mean square deviation of
truncated pixels of the 7-th order from their reconstructed values is found to be
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(500/4 )1/2==11 gradations. If an image is of a higher resolution (512x512,
1024x1024, etc.), then corresponding curves for levels 8, 9, ... are still closer to the
ordinate axis in the diagram (see the dotted lines in Fig. 4.3.).

This means that the volume of data stored (when an image is represented by a
truncated structure) is determined by the internal complexity of the original image
on which the number of terminal nodes depends, but not by the resolution of the
image or by the input hardware.

Algorithm A42 (w, V). (This algorithm marks the terminal nodes of a
pyramidal-recursive structure with the given threshold of the reconstruction error
w, and finds the volume of data stored V of a truncated structure).

1. Set y=t_jom
-1
2. For all pixels of the (m-1)-th level find
-1 5
y= (s(i1...im)—s(ir...im-1))".
in=0

If y<w, then (mark the node ij...im-1 as the terminal one; set V=V-k’n+1 ). (One
bit is used to save the information concerning the terminality of nodes).

3. Check for terminality (similar to item 2) all nodes of the t-th level (=m-2,
m-3, ...) for which all descendants have been marked as terminal. If there are no
such elements at the z-th level, then stop.

4.2. Comparison of Some Image Coding
Algorithms

Several image coding algorithms have been developed for comparative experiments
with pyramidal-recursive structures. An image representation by difference and
truncated difference structures, and ordering of the pixels according to the Hilbert
scan have been used in these algorithms. In addition, an algorithm of the DPCM
technique has been programmed.

Algorithm A43. (DPCM coding based on a TV raster).
1. For every single row of the NxN image, the first three pixels are saved and
every next pixel in the row is predicted sequentially as follows:

Si=aisi-1+tazs’i2+azs’i-3, i=4,...N

where s; is the predicted brightness of the i-th row pixel and sj=s’}, s2=5’2, $s3=5"3.

P R PN

i
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2. The difference d;=s;i-s’; is quantized with 4, 8 or 16 levels according to the
Max algorithm (assuming a Gaussian distribution for ) and saved.
3. Reconstruction of the pixels is performed according to the relation

wi = entier(arwi_1 + azwi.2 + azwi.3+ &), i=4,...,N,

where entier(-) denotes the nearest integer value of the argument and wj=sj,
WX=S2, W3=S§3.

Algorithm A44. (DPCM coding with variable rate sampling.)

The main difference between this algorithm and the previous one is that
difference signals of low magnitude can be omitted according to the criterion
described in [59 1. Reconstruction of the difference signal is performed using the
numbers of the quantization levels. Reconstruction of the original pixels is
performed as in the previous algorithm.

Algorithm A45. (DPCM coding with variable rate sampling based on the
Hilbert scan.)

This algorithm differs from Algorithm A44 in that no pixels along the image
row are estimated but the corresponding chain (sequence) of pixels along the
Hilbert scan of the image is analyzed. Reconstruction is performed as in Algorithm
Ad4.

Algorithm A46. (This algorithm performs truncation of the difference pyramid
structure.)

In this case a 4-ary structure of m levels is constructed, where the lowest m-th
level contains 2 x 2™ pixels of the original image. For every node s(i}...ir) of such
a structure starting from the root, the difference between its brightness and the
brightness of its ancestor on the previous level is evaluated:

O(ifeit) =S(iloit) - S (il.it-1),it=0,...KP-Lt=1,...,m,

where s’(ip)=s(ip)=so is the average image brightness. The difference is encoded
according to the Max algorithm (assuming ‘a Gaussian distribution for the
difference signal) with 16 quantization levels. Subsequently, the encoded signal
&(ig...it); ig=0, 1,2, 3; t=1,...,m, can be transmitted. To avoid error accumulation
due to the quantization errors, the values of the nodes s(i;...ir) are reconstructed:

S(if.ig)=S(i1.. 0 ¥ (i1...10¢).

Once the reconstructed values are obtained, truncation of the tree can be
carried out . For every node the mean square error is evaluated on the proper
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Fig. 4.4. Reconstruction error as a function of the compression ratio for Algorithms
A43-A47.

segment of the image as if this node were a terminal one. In the case that this error
is less than the given threshold, the node is marked as a terminal one and will be
considered further. This encoding procedure is repeated recursively from the top of
the pyramid to its lowest level. Thus, every subsequent step gradually refines the
fidelity of the image and does not change the image segments already obtained to
satisfactory precision. The complexity of the algorithm is O¢ N ), where N=2"" is
the number of image rows or columns.

Algorithm A47. (Truncation of the structure with a slant plane approximation
of the reconstructed image.)

A tree similar to that in Algorithm A46 is constructed. Then, for every four
nodes of the #-th level (2, 3,...,m), a slant plane is constructed to minimize the
mean square error Ep of the brightnesses of these nodes. In the case Ep<H, where
H is a given parameter, this plane is applied to approximate the corresponding
square fragment of the original image. If the mean square error E; of the
approximation of this fragment by the slant plane does not exceed the given
threshold H, the four nodes of the t-th level are considered as terminal ones and
their descendants on levels #+/, t+2,...,m are eliminated. The differences between
the obtained terminal node brightnesses and those from the slant plane are
evaluated and encoded as in Algorithm A46.

For all the above algorithms, corresponding programs were developed. The
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Fig. 4.5. Examples of reconstructed images in the coding of a difference signal and
the truncation of redundant structure nodes: (a) original, V=8 bit/pel, normalized
mean square error (NMSE)=0; (b) using Algorithm A46, V=2.0 bit/pel,
NMSE=0.08%; (c) using Algorithm A46, V=1.5 bit/pel, NMSE =0.15%; (d) using
Algorithm A47, V=25 bit/pel, NMSE = 0.07%; (e) using Algorithm A47, V=1.6
bit/pel., NMSE =0.29%,.
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image was stored in two different forms:
(a) TV-scanned for Algorithms A43 and A44;
(b) Hilbert-scanned and TV-scanned for Algorithms A45 - A47.

It should be noted that the use of a pyramidal-recursive structure provides an
opportunity to obtain a rough approximation of the whole image, whereas
traditional linear representation provides smaller fine fragments only, the same
volume of information having been decoded.

Examples of the decoded images are presented in Fig. 4.4. Figure 4.5 shows
the NMSE of the reconstructed image and the corresponding coding rate achieved,
defined as the amount of bits per pixel. As can be seen from the figure, Hilbert scan
utilization has advantages over TV scan, and algorithms based on the use of a
pyramidal structure work better than all DPCM algorithms.

An important feature of these algorithms should be stressed. Tree structure
data representation enables image data both to be decoded and processed
progressively from the top to the base of the pyramid, gradually refining the
results. This could give rise to an additional improvement of the actual compression
ratio in the case when the results already obtained are satisfactory [94, 123].

Recursive pixel enumeration in the recursive pyramid representation preserve
some topological properties of the image. We have not obtained significant
improvement of the compression ratio in the image coding based on this.
Nevertheless, this property might be useful for other applications in image
processing, where the topology of an image is important. The compressed form of
the image representation, i.e. the truncated difference pyramid structure, might be
rather efficient in respect of a decreasing volume of computations when different
image processing tasks are to be performed.

4.3. Transmission of Greyscale Images
with Gradual Refinement

The semantic redundancy of image data makes it possible for a human being to
perceive distorted or noisy image, to make decisions based on the observation of
separate parts or as a result of receiving a very limited data volume, for example, a
contour image. This redundancy is closely connected with a particular problem
being solving at the moment. It may be different for one and the same image
depending on the purpose of processing, and, therefore, its formal measurement is
quite difficult. At the same time, for each individual problem the semantic image
redundancy can be indirectly estimated via those decisions which are being made

i
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based on the analysis of the given image. In particular, two images can be
considered as semantically equivalent if they lead to identical decisions (after their
analysis by a human being or a computer).

Based on this thesis, it may be said that omitting part of the image data does
not disturb the semantics of the image perception, provided the decision regarding
this image and found within the frames of the problem under consideration remains
the same. Then, one possible approach to the elimination of semantic redundancy
during image data transmission consists in determining the succession of the data
to be transmitted which provides the quickest decision making at the receiving side.
After the decision is made, data transmission (or data selection from the memory)
may be ended; which is equivalent to a decrease in the transmission volume or
semantic data compression.

Hence, it is the most semantically saturated data part which should be
selected, transmitted, and analyzed first. A question arises as to how to extract this
part? If there is no a priori information about the image to be transmitted, then,
evidently, the only useful criterion for data selection relates to the possibility to
reconstruct approximately the image transmitted, supposing that this
approximation is adequate for decision making. An example of the most valuable
data extraction is shown in Section 2.2: “the right” recursive definition of a binary
number allows to identify it (to make a decision regarding its belonging to a certain
scale gradation) reading bits from the high-order to low-order ones. Extraction
ceases when a certain numerical accuracy, adequate for its identification, is
reached.

Let us process the image data in a similar way, analogously to the scheme
(2.1.4) and Fig. 2.1. Let us extract and transmit data in a stepwise manner in order
that each succeeding data portion refines the preceding one, thus gradually
“developing” the image at the receiving side. Concerning regular hierarchical
structures, this idea of image transmission with a step-by-step reconstruction at the
receiving side was proposed in [123], and subsequently a number of algorithms
was derived on this basis [74, 92, 94, 1251].

The present section describes a theoretical 'model of image transmission with
gradual refinement using pyramidal-recursive structures as proposed in [11], and
presents original data extraction algorithms. The main assumption is that a certain
part of the semantic information is preserved at the upper levels of the image
pyramid, which are an approximate description of the image under consideration.
This data should be extracted and analyzed first. It is only a small part of the total
data volume that corresponds to these levels, as a result of which, in the decision
making process, a high equivalent compression ratio may be reached or the
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transmission time may be significantly reduced.

Let us take the time needed to obtain an approximate image description with a
given accuracy as a formal criterion of the efficiency of the extraction (or
transmission) technique. The notion “accuracy” in each particular case should use
the a priori information on the class of images treated. In this section, due to the
lack of such information, we limit ourselves to an image reconstruction error at the
receiving side of some abstract communication channel (without interference).

We set the problem in the following way: it is necessary to transmit a
p-dimensional greyscale image of N=k" elements each having a brightness in the
range 0 to 2. Thus, the total number of bits describing an image equals nN. It is
necessary to determine the order of data element transmission"’ for the optimum
(for the given criterion) image reconstruction at the receiving side with the limited
transmission time.

As the criterion of the received image quality, we analyze the traditional mean
square deviation of the received image from the original one (see Section 2.5

concerning criterion selection):
N

> @n-s)*
u(T)=l=1 N
> st
i=1

where s;, =1,...,N is the brightness of the i-th sample cf the original image being
transmitted; and where z;(T) is the corresponding brightness of the received image
at the time T. Let also d be the elementary time for the transmission of one bit.
Note that, according to (4.3.1), the optimum transmission technique consists
of the ordering and subsequent transmission of all image bits in accordance with
their contributions in the criterion (or reconstruction error) value; however, in this
case the implicit order of both samples and the enumeraton of their bits will be lost.
Additional time will be required to transmit information of relating to the

(4.3.1)

“coordinates” of the bits and will considerably decrease the criterion value.
Therefore, the transmission technique should combine both implicit enumeration
and the selection of the most significant (for the criterion) bits and samples.

Let us consider some techniques. Suppose the brightness of all pixels of an
image at the receiving side to equal zero before the transmission begins, i.e.
zi(0)=0, i=1,...,N. Then the criterion value at the time 7=0 equals u(0)=1.

1. The traditional technique consists of linear image scanning row-by-row and
the transmission of successive samples for each row. In this case, the u(T) value

1) Data element means here both a pixel and an individual bit.

IMAGE CODING AND PROGRESSIVE TRANSMISSION WITH GRADUAL REFINEMENT 101

u(7}
0.5+

0.4

0.3 4

0.2

- g
! ! ' A 1337

Fig. 4.6 Dependence of the image reconstruction error at the receiving side on the
transmission time: (1) bit-serial transmission according to TV-scan; (2) bit-slice
transmission; (3) level-by-level transmission of the pyramidal structure; (4)

combination of 2 and 3.

decreases after the transmission of the next sample s; in 5;/N. As the order of the
samples is not connected with their absolute values, the u(T) dependency is, on
average, linear (Fig. 4.6, curve 1). Should the transmission time be limited by the
value To=Knd, (transmission of X samples), then the reconstruction error is, on

average, equal to:

u(To)=1-To/ndN = I-K/N, (4.3.2)

a part of the image (the first few rows) being reconstructed exactly, and another
part not being reconstructed at all.

2. Let us make use of the different significance of bits in each brightness value
and pass to an image transmission “by bit-slices”, i.e., by transmitting the
sequence of binary matrices, each being a set of bits of one number from all
samples. This is equivalent to applying a recursive structure which represents the
domain of the intensity function (see Section 2.5). Let us evaluate the criterion
value after transmission of the first binary matrix. Suppose that the brightness
distribution is uniform all over the range. One outcome, in particular, is that the
frequency of appearance of zeros and ones in all binary matrices is equal (for real
images this is true beginning with the 2nd-3rd bit-slice). Then
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S+ Y 2"

_l -
is1<2” " ks>2" !

N
2 st
i=1

u(NS)= (4.3.3)

with the number of summands in both sums of (4.3.3) being equal to N/2 due to the
supposition made.
After the transformation of (4.3.3), we get:

2 -1 2 2 -1
2 N " 2 _ﬂ_,_ 22n—3N
=0 2" iy 2" 2"_2
U(NS)= — = =05 (4.3.4)
2 N 27 -2
j=0 2"

Comparing the value from (4.3.4) with u(0), one can see that the criterion
value decreases with the ratio of (4 22 ) ( 2"-2 ), i.e. a little greater than 4 times.
After the transmission of the first binary matrix, one again comes to the initial
task, but now for an image having a twice smaller brightness gradation number
equal to 2"'1. The second matrix transmission also decreases the error with the
ratio of ( 4-2"12 ) ( P ), and so on. Thus, with a limited transmission time

To=INS, (after transmission of [ bit slices) one can obtain:
_To
u(To) = 4NS

In all time periods from T¢o=KNJ to T=(K+1)NJS the function is linear on
average (Fig. 4.6, curve 2). It should be stressed that the information concerning
the whole image field will be received starting with Tg=Nd. This is a principal
difference between the bit-slice transmission technique and the previous method.

3. Now let us consider a transmission technique based on pyramidal-recursive
image representation. Let us begin the transmission with the top level (the root of
the &P -ary tree). Evaluate the reconstruction error after transmission of the #-th
level pixels from a pyramid. At this moment, the ¢-th level image is obtained at the
receiving side. The fragment of this image corresponding to the node with the
number i}...i; has a constant brightness equal to s(ij...ir). The contribution of this
fragment into the mean square error equals:

E(ir.i) =™ 3

i+ 1

Z (s(i1...im)-s(i1...iz))2=
im

=SS (Sinedm) - S(i1eit) ) - R (s(11i0)).
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Fig. 4.7. Change of each linear segment of curve 3 (Fig. 4.6) in using the bit-slice
transmission technique of every difference image instead of successive bit-serial
transmission of the corresponding pyramid level.

By averaging this contribution over the entire image, one can get:

E=kP'S .S E(in.it)

i i

- .. 2 -t .02
KPS S (sCieim))? - S S s(irit))’ = Dm- Dy,
i i i I
where Dy, and Dy are statistical dispersions of the m-th and ¢-th level images. Then
the criterion value at the moment

t
To=n62 k" (i.e. after transmission of t levels) equals:
i=0
u(To) = (Dm-Dt)/(Dm*so’) = (1-De/ D)/ ( I+s0°/ D), (4.3.5)

where sg is the average brightness of the image transmitted.
In particular, for a p-dimensional separable Markov field using (3.2.6) one can
obtain from (4.3.5) the value of the expected reconstruction error :

U(To)=(1-((a( 1-F*)-2r(1-F))1 & 1-r)2 )P )/ ( 1+50° 1 D), (4.3.6)

where a=k""".

Figure 4.6 shows (4.3.6) dependency for the case k=2, p=2 (curve 3) with
1+s02/ D taken to equal 4, which is valid, for example, for a uniform brightness
distribution of the original image. Comparing curves 1, 2, and 3, we see that image
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Fig. 4.8. Reduction in the reconstruction error while transmitting a complete tree
(1), and the truncated difference structure (2) (experiment).

transmission based on the use of pyramidal representation provides a very fast
criterion decrease during a short time, though later the bit-slice transmission
becomes more efficient. Let us combine the advantages of these two techniques.

4. One can use the bit-slice transmission scheme in sending each following
image from the pyramid. Note, that the direct application of this technique to the
arrays of absolute pixel values corresponding to pyramid structure levels is not
acceptable, as the high-order bits of each image from the pyramid duplicate the
corresponding bits of the previous level image, i.e. the data that have been already
transmitted. Thus, it is more reasonable to use the bit-slice scheme to transmit the
difference structure, but not the initial one, when interlevel correlations have been
already eliminated.

Experiments presented in Section 4.1 show that the brightness distribution at
lower levels of the difference structure is close to a Gaussian distribution.
Therefore relation (4.3.4) describing the bit-slice image transmission with a
uniform brightness distribution can be used with some limitations only. As the
difference signal has a zero mean value, its first bit of each brightness value is a
sign, and transmission of the first bit-slice does not affect the criterion value. After
transmission of the first slice, the remaining bits of difference samples have a
distribution density function which to a first approximation may be considered
already as uniform. After the second bit slice transmission the distribution becomes
uniform to a high degree of accuracy.

Thus, model (4.3.4) may be used for each image from the difference pyramid

IMAGE CODING AND PROGRESSIVE TRANSMISSION WITH GRADUAL REFINEMENT 105

c.) d.)

Fig. 4.9 Gradual image refinement at the receiving side during the combined
transmission of the truncated difference structure:
(@) T=0.005; (b) 7=0.02; (¢} 7=0.08; (d) T=0.3.

beginning with its second slice transmission. I:Ience, by applying the bit-slice
transmission technique of every difference image instead of the successive bit-serial
transmission of the corresponding pyramid level, each linear segment of curve 3 at
Fig. 4.6 may be changed for a curve of type 2, as is shown in Fig. 4.7.

As a result, we obtain curve 4 (Fig. 4.6) corresponding to the successive
transmission of difference images from the pyramid into a channel with bit-slice
transmission of each image. One can see from the diagram, that this means of

transmission is the most preferable of those analyzed. A further development is the
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transmission of a nonlinearly quantized difference signal, which is not considered
here.

The transmission techniques described do not use image data compression, i.e.
they are also applicable to facsimile transmission. Should a compressed image
represented by a truncated difference structure be transmitted, then the efficiency
can be increased still more. The general transmission scheme described in item 4
remains the same, the difference signals corresponding to descendants of terminal
nodes being omitted. In this case, it is necessary to transmit additionaily
information relating to the structure node terminality for unequivocal
reconstruction of each brightness sample “coordinates” at the receiving side. This
is achieved by adding one bit indicating the terminality of each sample transmitted.

Figure 4.8 shows an example of the criterion u(T) graph change when using
the combined technique to transmit the truncated difference structure for a real
image. Figure 4.9 shows examples of reconstructed images at the receiving side at
different times for the case of the combined transmission of truncated difference

structure.

4.4, Compression and Transmission of
Binary Images

The main idea used for the encoding and transmission of binary images
represented by tree and pyramidal structures is the same as for greyscale images. It
consists of the elimination of redundant structure nodes which describe image
areas of the same color and scanning the structure from top to the bottom during
transmission.

One of the first algorithms of such a type was described in [95], and, later on,
some modifications were proposed [76, 114, 125, etc.]. However, a theoretical
estimation of the encoding ability of pyramidal representation for binary pictures
and transmission models has not yet been given. The results described below are
based on a two-layer model of a binary image (Section 3.3). These results and the
encoding-decoding algorithms for binary image data transmission with a gradual
reconstruction are described in [11, 54].

Let us consider the compression ability of the encoding algorithm for binary
images based on the two-layer image model proposed in Section 3.3. The volume of
data stored with this representation for a p-dimensional image of N=K"" elements
is equal to the number of nodes M in the KP-tree representing the image multiplied
by Vp, the volume of information on a particular node. As the tree contains three
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types of nodes (“black”, “white”, and “grey”), with the probability of each given
by the relations (3.3.6) - (3.3.8), it is possible to find the minimum value of Vy. For
example, with k=2, p=2:

- 333,31, 1_
Vo = 810g28 810g28-4log24—1.55

If the position of particular structure node is set up implicitly by giving the tree
traversal algorithm, then no other information about the node except of Vp is
required. In this case, the compression coefficient equals the ratio of the initial data
volume to MV:

N _ K"

=MV, = MV,

(4.4.1)

It is possible to propose various coding techniques in which Vg approaches its
minimum value. For example, coding algorithms based on linear grammars and a
quadtree traverse in a direct order for which Vg=1.63 and 2 bits are given in [76].
Another algorithm is described below. This is equivalent to the algorithms already
mentioned regarding obtaining a value for Vp, but is suitable for arbitrary image
dimension and is based on the tree traverse level-by-level, from top to bottom. This
enables images to be decoded and transmitted with gradual refinement (similar to
[94, 123], see also item 4.1).

Let us estimate the number of nodes in the tree M. Based on the proposed
two-layer model of a binary image, M can be approximately estimated as K* tMo,
where My is the number of nodes in a subtree with the root at the level 5. Mg can
be obtained from (3.3.6) by substituting m-fp instead of m, fp can be estimated for
each class of images individually. Taking these values for (4.4.1), we get:

A N S (AR,
Vokptok(m—to)p—(m—t0)+p - Vo :

a (p,k,m—1p) = (4.4.2)

In particular, for a two-dimensional image with k=2 one can obtain:
m—t,—2

a (2,2,m—t0) = T
0

The simplest coding scheme is based on a constant length code for a node
color: a “gray” node is coded as 00, “white” as 10, “black” as 11, with Vp being
equal to 2 bits.
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Algorithm A48 (T, A). (The algorithm scans the 24 -ary tree T representing a
binary image and forms the binary code sequence in the binary array A.)

1. Set t=0; i=1.

2. For each node of the t-th level do

(if the node color is “white”, then set (A @()=1; A@+1)=0; i=i+2);

if the node color is “black”, then set (A @)=1; A@+1)=1; i=i+2);

if the node color is “gray”, then set (A({)=0; A+1)=0; i=i+2)).

3. If t=m, then stop, else (set t=t+1; go to 2).

On completion of the encoding algorithm, the array A contains a binary
sequence which represents encoded information. In this case Vg=2 bits.

In decoding, implicit information on the tree traversal method is used and the
fact that every “grey” node of the (#-1)-th level contains just kP direct descendants
at the t-th level. This provides unequivocal reconstruction of node relations in the
tree on completion of the decoding algorithm.

Algorithm A49 (A, T). (The algorithm reconstructs the colors of nodes of the
truncated &” -ary tree T representing a binary image according to a binary code
sequence from the array A.)

1. If A(1)=1, then (if A(2)=0, then (the root of T is “white”; stop)), else (the
root of T is “black”; stop)).

2. Set (t=1; i=3; g(t-1=1; g()=0).

( g(1) is the number of “grey” nodes at the level t.)

3. Repeat kP times: (if A(i)=0, then (the following node of the t-th level is
“grey”; set g()=g(t)+1), else (if A(i+1)=0, then the following node is “white”, else
it is “black”); set i=i+2).

4. Set g(t-1)=g(t-1)-1, if g(t-1) not equal 0, then go to 3.

5. If g0, then (set (g(t-1)=g(1), g(1)=0, t=t+1); go to 3), else stop.

It is not difficult to see that the second bit in the description of a “grey” node is
redundant. Algorithms A48 and A49 are easily modified for the case of a “grey”
node encoding by one zero bit. In this case, the average data volume ¥ for a node
coding (based on the region model with ¥=2) equals

Vo=1x3/8+2x3/8 +2x1/4=1.625 bits.

Fig. 4.10 shows the compression ratios a(p, k, m-tp) depending on the m-to
value for different p and Vg=2, which corresponds to the Algorithm A48. In the
same figure the results of coding images (1)-(6) from [76] and a three-dimensional
image from [149] are indicated. The compression ratio «a fluctuates for images of
varied complexity from 4 to 15, which is better than the results of a block coding
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and run length coding (see also the comparative estimations in [149]).

Fig. 4.10. The compression ratio of a binary image described by a two-layered
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N

model depending on the m-fp value for a different image dimension p.

Let us study the transmission of an encoded binary image. In this case, a
normalized mean square error is not already a satisfactory criterion of image
reconstruction at the receiving side. It is more convenient to calculate the absolute
deviation of the image received from the original, which is equivalent to
determining the number of noncoinciding pixels. Let us consider an image
reconstructed at the receiving side from successively taken elements of array A(i),
i=1,...,.M according to the Algorithm A49.

As there are no “grey” pixels in the original image, it is clear that the reception
of a “grey” node does not decrease the uncertainty in the reconstructed image, i.e.
“grey” does not coincide with either “white” or “black”. Then the deviation
(reconstruction error) of the reconstructed imaée from the original at a given time
is the total square of pixels in the received image considered at that time as grey.

The number g(t) of “grey” nodes in a tree depending on the level number for
models of a simple region and a line is given by the relations (3.3.6). The area of
each “grey” pixel at the 7-th level equals 24 (taking the area of the whole image to
equal 1), then, limiting the transmission period by the time of transmission of ¢
levels, one can obtain the criterion value:
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Fig. 4.11. The reconstruction error at the receiving side during the progressive
transmission of a binary image for #=0 (curve I - p=2, curve 2 - p=3)
and #=2 (curve 3 - p=2, curve 4 - p=3).

w(To)=kPe(t)=k". (4.4.3)

It can be seen from (4.4.2) that for the models of a region and a line, the
criterion decreases exponentially with a linear increase of the level number # To
find how this value depends on the absolute time 7', it should be taken into
consideration that the 7-th level of a tree contains n(z) nodes, i.e. requires the

transmission time 6kt(p e 1. Fig. 4.11 shows this dependence at time

t
To=3 Y n(i),
i=1

with #=1,...,6 for p=2, 3 and k=2. Considering the uniform distribution of “grey”
nodes along each level, the decrease in the criterion during the transmission of
every level must be linear (curves 1 and 2 at Fig. 4.11).

For a two-layer model of a real image, this inference is valid only beginning
with the to level, as prior to this moment all the nodes are considered “grey” and
the criterion value does not decrease (curves 3 and 4 at Fig. 4.11).

To summarize, it should be noted that the representation of image data by
pyramidal-recursive structures provide high compression ratios; besides, the
possibility arises of stepwise transmission and the utilization of compressed
encoded information together with gradual refinement at the receiving side or in
the processing device. This enables information analysis to begin before the time
when the total data volume is received. This feature may be rather important for
data transmission from sources which are under the risk of being destroyed and in
situations requiring operative (in real time) decision making.

CHAPTER 5

IMAGE PROCESSING WITH
PYRAMIDAL-RECURSIVE
STRUCTURES

Chapter 5 is devoted to the processing of images represented by
pyramidal-recursive structures. The primary purpose of this chapter is to show that
various operations with images may be performed not based on their initial
description, but by considering the hierarchical data structure. This enables
showing that many algorithms of image processing, based on a pyramidal-recursive
representation, have a complexity that depends on the number of structure nodes
M rather than on the number of pixels of the initial image N. As follows from the
previous chapter, M is 2-8 times less than N for greyscale images, and 5-40 times
less for binary images, depending on the class and complexity of the image
processed. This results in a considerable reduction of computational expenditure as
compared with traditional algorithms.

A second purpose is to concentrate attention on such processing algorithms
which utilize significantly the representation hierarchy and which allow to specify
the result gradually when accomplishing a successive analysis of an image pyramid
from upper levels to lower ones. This may reduce still more the time of task
resolving, if a decision can be made before all thp data is processed.

The third purpose is to show, with the help of some examples, the advantages
of positional coordinates, which enables the algorithms of processing the images of
different types and different dimensions to be described.

The material of this chapter has been published in [11, 16, 21, 56, 58 1.

Section one deals with the simplest operations with images which usually refer
to problems of preliminary processing; some algorithms relating to the extraction of

image features are also discussed. The main task in this case is to demonstrate the
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possibilities of specifying the gradual feature value when the estimation is carried
out in the course of a level-by-level tree processing.

In the second section one of the key problems of image processing, that is, the
problem of object identification, is discussed. Approaches to one of its
modifications — the task of hierarchical template matching — are considered. With
this, more than a two-order decrease of computation as compared with to the
classical correlation matching scheme is achieved.

The third section considers an identification algorithm for an arbitrarily
oriented plane object which is based on image and object representations by regular
hierarchical structures.

5.1. Simple Operations with Images
Represented by Truncated Trees

Let us consider performing some operations on images represented by
pyramidal-recursive structures. In this section the simplest image transformations
are described, so to speak: basic actions which can be used for the construction of
more complex algorithms . It should be noted that, at present, a large number of
various algorithms of image processing based on pyramidal and regular tree
structures are described in the literature (see, for instance, [22, 49, 63, 92, 99,
136, 1471). However, these descriptions vary a great deal; many of them deal with
particular cases only and lead to no specific conclusions. They employ different
terminology and different mappings of the data structure into the computer
memory are used. The latter is significant, as the complexity of one and the same
algorithm depends upon the data structure organization technique.

For example, a popular structure for a two-dimensional image representation
is a quadtree [51, 70, 113]. With this it is often supposed that brightness and
references to ancestors and descendants are stored in the memory for each tree
node. In this case, it is easy to make forward and backward traverses in the tree,
but it is not convenient to work with nodes at one and the same level. Given a linear
representation of trees, successive access and processing of terminal nodes is most
convenient [49 ]. Other data organization is possible ([46, 111 ], Section 4.4 of the
present book) for which some access techniques are worthwhile and others are not.

The algorithms described in this section differ in their orientation for the
gradual refinement of results, and their complexity, depending on the number of
nodes in the truncated tree structure. The material given below is based on the
results presented in [11, 551.
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To be able to estimate the complexity of the algorithms described, without
being limited by the framework of any particular representation in the memory, we
suppose that we have at our disposal a truncated K -ary tree T, containing M nodes
and representing a pyramid of images. Each node of the t-th level is brought into
correspondence with the number G=ij..ir of the respective cell of the z-th
decomposition d(i 1..it)EDF and a pixel s(i}...i¢) from the image pyramid.

The number G corresponds one-to-one to the positional coordinate g=.i,...it by
which it is also possible to identify the node. The following operations of unit
complexity in the tree T are considered :

(a) transitions to the previous and the next nodes at the 7-th level (consider the
nodes as ordered in each level by their numbers or positional coordinates). Within
an elementary cell of the structure this operation is described by the relation
G>=G1* 1, outside the cell this may not be correct, as a some of the nodes can be
missing due to a truncation of the tree;

(b) going up one level from a given node with coordinate gr=.i;...ir to a node
with the coordinate g>=.i;...ir-1;

(c) going down one level from a given node with coordinate gr=.i;...ir to a node
with coordinate go=.ij...itir+] .

This set of operations covers most of the requirements for actionsl on the
structure enabling access to its various elements and the realization of different
processing algorithms. It provides for both the transition between nodes at the same
level and interlevel transitions. The complexity of the algorithms described below
changes with the selection of a particular physical data structure in a serial or
special purpose parallel computer, but it can be recalculated taking into account
particular realizations of the basic operations indicated.

Access to a pixel. In many image processing tasks the need arises to find the
pixel at a given distance in a given direction from the pixel being considered. If
direct access to the data is provided, then it is not difficult. However, many special
systems of image processing (matrix processors, for example) pay for the
possibility of parallel processing by having access bound to time consumption which
is proportional to the distance b to the element searched. In a pyramidal structure,
this access does not require a time O(b), but (on average) O(log b).

Consider a node (cell) having the coordinate gs=.i;...Iir and suppose the
coordinate of a node being searched is gp (respective to g1). The brightness is to be
found corresponding to the node being searched. Then the absolute positional
coordinate of the node searched is g2=.j,...jt= g1 ® go. However, this node in the
tree may be missing (because of truncation); this means that the required
brightness may only be determined from the brightness of the nearest ancestor



114 IMAGE REPRESENTATION AND PROCESSING

node for g2. Therefore, after finding g2, it is necessary to move from the tree root
down along the branch (which is determined by the digits jj...j:) until either the
t-th level node or the terminal node at some A-th level (A<t) is reached. The
brightness of the node reached is the required brightness.

It should be noted that if the arithmetical difference |Gy - G2! is small, then
the node jy...j is located close to the node i;...7; in the ordered set of nodes of the
t-th level. In this case, a route along the level may be shorter than that through the
tree root. However, the problem is that the existence of the j,...js node is not
guaranteed if it is not acknowledged that i;=j;, ..., i-s1=jr-1. Therefore, an
inside-level search is hardly reasonable. Thus, the algorithm described “visits” ¢
nodes of a tree on average, or has a complexity O(¢)=O(log( N)) irrespective of the
distance gg between the nodes g and g2.

It is more advantageous to go up from g; to the nearest common ancestor of gy
and g2, rather than to descend to g2. The level number [ of the common ancestor of
g1 and g2 is, on average, inversely proportional to the logarithm of the distance
between cells having coordinates g7 and g2 in discrete space. Hence, the number of
steps of the access algorithm (ascent and descent along the tree) proportional to the
value -/ depends on the distance b as O(log b). As an example, we shall consider an
algorithm of access to a neighboring pixel.

Algorithm AS51 (gj, g2, s, [, t, h). (This algorithm finds the brightness s, the
level number % and positional coordinate of a pixel g2, which is a neighbor, in the
direction [, of the pixel s(ij...it) having the coordinate gj=.i]...ir. Direction [
coincides or is in the opposite direction to the /-th Cartesian coordinate axis
depending on the sign of ..)

1. Find g>=.ji...jr according to g>=g; ©.0...0 e
2. Find the greatest number n for which if=ji, ... , in=jn. (This number can be
determined from step 1, taking into account the range of the last transfer while
performing the addition).

3. Ascent from the node g; to t-n levels; set ~=n.

4. Set =h+1. Descend down the branch determined by the digit j; at one level.

5. If the node reached is terminal or A=t, then (set s=s(ji,...,jn); &2=.j1...jh;
stop) else go to 4.

The algorithm A31 is of interest. It should be noted that according to Property
7 (see Section 2.3) just one half of the neighbors of cell d(i}...ir) are included in the
cell d(ij...ir-1). To reach such a neighbor, the algorithm requires two steps (an
ascent by one level and a descent by one level). Just one half of the remaining
neighboring cells form part of d(i,...ir-2); to reach these, the algorithm makes four
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step (two ascents, two descents), etc. Then to reach the neighboring pixel, the
following number of steps will be carried out on average:

D=2x1/2+4x1/4+6%x1/8+.+2tx2" <4,

i.e. the complexity of Algorithm AS1 equals O(1).

Image masking. The simplest operations which can be made with images are
operations involving unification, superimposition, intersection, projection, etc.
These can be described under the general name masking, as in their execution
some pixels (or an image as a whole) become a mask through which other pixels or
an image are examined. For instance, the elimination of “invisible” lines in a
drawing or the axonometric projection of a detail, can be achieved by masking by
visible surfaces; or the superimposing of an inscription on an image field involves
masking some of the pixels. The particular feature of these operations is that the
masking of an element (or several elements) by another does not require the
analysis of those pixels which neighbor the masked one, but only requires a
knowledge of their mutual location. Therefore, a typical approach in solving these
problems is a parallel traverse of the mask and the image masked (or the
determination of the masked elements in the process of a traverse ). l

By representing an image by a truncated tree, the possibility arises to perform
masking by large blocks corresponding to terminal tree nodes. This results in a
masking algorithm of complexity O(M ), and not O(N), where M is the number of
nodes in the tree, and N is the number of pixels of the initial image. It is also
important that large blocks are considered first, i.e. it is advisable to scan a tree
from the root to leaves, which yields at each intermediate step an approximate
result useful for decision making.

Two algorithms for black-and-white image processing are analyzed below. The
first is intended for the intersection of two images, the second for the projection of a
multidimensional image into a space of lower dimension. Despite the apparent
difference in these problems, algorithms are very similar to each other. Their
essence is the parallel traversing of representing trees “in width”, i.e. the nodes of
each following level are traversed sequentially. At each step, the node which masks
the others from the set of analyzed nodes is found. If this is a terminal node, then
the solution for the given pixel is found, otherwise, all the descendants of the node
need to be taken into account in order to make a decision at the next level, etc. This
is done by joining together several subtree roots (preserving the node numbers).
This is called “handing up” in the text of the algorithm below.
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Algorithm AS2 (T1, T2, T3). (For 4 -ary trees, T and T2, representing
binary images /7 and I2 of size KM xkM=iP m, the algorithm forms the 14 -ary
tree T3 representing the image /3=I1N12).

1. If the root of T'1 or the root T2 are of “white”, then perform (the root of 73
is “white”; stop).

2. Set +=1. Hand up T2 to the root of T/; call the result T3. Further work with
T3.

3. If £m or there is no node on the #-th level of T3, then stop, else go to 4.

4. For each set W of nodes of the ¢-th level, which have a common ancestor at
the (7-1)-th level, perform 5.

5. For each it=0,...,kp-1 perform 6.

6. For all nodes with the same numbers it from W, find the node having the
most “light” color, other nodes of the same number i; are to be eliminated. (White
color masks grey and black; grey color masks black.) If the color of the node found
is “grey”, then hand up to it all subtrees the roots of which were the eliminated
“grey” nodes.

7. Set t=t+1; go to 3.

Algorithm A52 scans in parallel two trees T/ and T2 with each tree nodes
being passed not more than once, i.e. the complexity of the algorithm is determined
by the sum of the number of nodes T/ and T2 and equals O( M ;+M32).

The algorithm of multidimensional binary image projection into a cartesian
coordinate subspace operates in a similar way. The difference is that a set of nodes,
from which a single masking node is chosen at each step, is formed by the
projection of nodes having the same ancestor into the subspace.

Algorithm AS53 (T1, T2, r). (From a 2 -ary tree T/ representing a
black-and-white image /; of size k'nX"'ka=kp M the algorithm forms the
(KP-1 )-ary tree T2 representing the projection of 7/ into a subspace orthogonal to
a coordinate axis with number r.)

1. If the root of T/ is not “grey”, them perform (the color of the root T2 set
equal to the color of the root T1; stop).

2. Set +=1; copy T1 and mark the copy by T2. Further work with T2.

3. If &m or if there is no node on the ¢-th level of T2, then stop, else go to 4.

4. Change digit i in all numbers of nodes of the t-th level for digit j=i/r.
(Projection operation is made according to (2.4.11).)

S. For each set W of nodes of the ¢-th level having a common ancestor at the
(t-1)-th level, perform 6.

6. For each jt=0,...,kp'1-1 perform 7.
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7. For all nodes with the same numbers j; from W, find the node with the most
“dark” color, other nodes with number j; are to be eliminated. (If some nodes or all
nodes are of the same color, then any of them may be taken). If the color of the
node found is “grey”, then hand up to it all subtrees, roots of which were the
eliminated “grey” nodes.

8. Set r=t+1; go to 3.

This algorithm also scans each node T not more than once, i.e. has
complexity O(M ). In a similar way, other algorithms based on a masking operation
can be constructed: image projecting in variously oriented subspaces, the
unification of two or several images, the removal of invisible lines in
three-dimensional images, etc.

Feature extraction. Reduction of semantic redundancy in image processing is
realised by describing an image or its separate fragments by sets of features
significant for solving the given problem. For different problems, different features
are required and it is impossible to determine an adequate set of these beforehand.
That is why a set of various algorithms is required which enables images to be
described in a different way depending on the problem orientation of the system.
Let us consider two types of algorithms dealing with feature extraction - some of
these are based on taking into account pixel brightess or coordinates in an image
(or its fragment), while others are based on the analysis of pixels’ neighborhood.

Algorithms for local estimations of intensity, dispersion (energy), correlation,
object area in highlight areas, image moments, etc. can be considered to be of the
first type. The second type includes detectors of spots, lines, and contours, as well
as algorithms based on quantitative characteristics of the estimation of
neighborhood properties, for example, object perimeter, brightness gradient at a
given point, etc.

Different algorithms of feature extraction based on the use of pyramidal and
tree-like structures are described in the works [27, 33, 43, 120, 147]. Some
algorithms distinguished by the possibility of obtaining a gradual result, with the
operation time proportional to the number of structure nodes, are given below.

Let us begin by considering the algorithms for those features, the extraction of
which supposes an analysis of the brightness value of each pixel taken separately
(without neighboring pixels) and, possibly, by also taking into account the
coordinates of these pixels in the image field.

These algorithms are based on traversing the truncated tree representing an
image. In order to obtain, at each given moment, an approximate value of a feature,
it is convenient to perform the traverse level-by-level starting with the higher ones,
and to scan nodes at each level in turn, from left to right.
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Suppose it is necessary to estimate a feature value for a given image fragment.
There can be several different cases at each step of tree scanning. If a cell
represented by the following node of the tree completely belongs to the
predetermined image fragment (where the feature value should be estimated) and
the node is terminal, then its contribution is taken into account for estimating the
feature value. It is just the same as if all values of pixels corresponding to this node
were processed.

If the node is nonterminal, or if the cell does not belong to the fragment, then
this node is ignored.

Finally, if the node is terminal, and the respective cell does not completely
belong to the fragment but partially intersects it, then it is necessary to find the
area of cell intersection with the fragment and to take into consideration the
contribution of this area assuming that its brightness is even. The intersection of a
square or rectangular fragment with the cell is easy to find having restored
Cartesian coordinates of the cell by its number (positional coordinate) and
comparing these with Cartesian coordinates of the fragment.

As an example of algorithms of this type, let us consider an algorithm for
image volume calculation (that is, for estimating the number of “black” pixels in a
given fragment of a p-dimensional binary image), and an algorithm for
determining the brightness gradient of a fragment of a greyscale image. The
complexity of these algorithms equals O(M ) due to the fact that they are based on a
truncated tree traverse, where M is the number of nodes of a subtree covering the
fragment.

Algorithm AS54 (T, F, V). (This algorithm finds the volume V, normalized to
{0, 11, of the figure formed by “black” pixels belonging to a hypercubic fragment F
of side km'1< a<k™ pixels. The p-dimensional image of the side of % pixels is
represented by the truncated & -ary tree T, the nodes of which are marked by “+”,
“0", or ”-" depending on whether the respective cell belongs to the fragment,
intersects it, or doesn’t belong to it.)

1. Set (¥=0, =0, Ng=0). (Ng is the number of “grey” nodes at the current
level).

2. For each “not white” node of the t-th level perform 3.

3. If the color of a node is “grey”, then set Ng=Ngtl, else (if the mark of the
node is “+”, then set V=v+k P t; if the mark of the node is “0", then (find the volume
Vo of the intersection area of fragment F and the cell of the ¢-th decomposition
corresponding to the current node; set V=V+Vp)).

4. Set r=t+1; if Ng=0 or tm, then stop, else go to 2.
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Fig. 5.1. Convergence of an object area estimations with the increase of level
number.

An approximate estimation of the volume with deficiency is found in V after
the scanning of ¢ tree levels. A similar estimation with redundancy may be obtained
by adding the value Ngk-p "o V, i.e. the volume of “grey” cells of the 7-th level. If a
two-layer model (see Section 4.4) is valid for the fragment F, then a nondisplaced
estimation of V will be the average value of estimations with redundancy and with
deficiency, since, as it follows from the model, half of the “grey” cells on average
will turn out to be “black” at lower levels.

The results of area estimations of the projections of different planes after the
processing of ¢ (+=1,...,6) tree levels are given in [147] for a separate image and
averaged for 120 images. Figure 5.1 shows respective graphs indicating that
averaged estimates readily converge to a true value. Figure 5.2 shows similar
estimations of the “black” pixels area of an image.

Now, consider an algorithm which enables the brightness gradient of a
greyscale image to be found. For a fragment of a digital image, this is usually

determined as the vector
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c.) d.)

Fig. 5.2. Gradual estimation of the square of white regions:
(a) image of the 4-d level; deviation of area estimation from the real value =12.3%;
(b) the 5-th level, =1.7%; (c) the 6-th level, =0.1%; (d) the 7-th level, =0.0%.

z= S(XDXi (5.1.1)

[
where s(xi) is the brightness of the pixel, the cartesian coordinates of the center of

which are x;. The calculation goes along the whole fragment area.

Let us suppose that the gradient for a fragment coinciding with a cell of the
h-th decomposition and with positional coordinate g=.i]...ix is to be found.

Then, to find z, it is sufficient to sum the vectors corresponding to the terminal

A the renrecenting tree. The weight of each such vector is determined by the
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number of the node level and the brightness of the cell. Should we take it in mind to
get the next refinement of the approximate value of the gradient at each step, then
it is necessary to traverse all the nodes of the tree, beginning with the root along the
levels from top to bottom. The following algorithm provides an approximate
gradient value after the processing of every level of the truncated difference tree
where each node is assigned the brightness value.

O(i1...it) = s(it...it-1) - s(i1...it) (5.1.2)

In (5.1.2), s(is...it) is the absolute value of the ¢-th level element with 8(iy...ix)
being the respective value of the difference structure element. The gradient gradm
as a positional coordinate is obtained from (5.1.1) by replacing the vector
operations with those of positional coordinates:

-1
gradm= E S(il...im) *(.il...im*gm),

i1ye0nrim=0
where gm describes the transition to the center of the m-th level cell. Considering
the linearity of (5.1.1) and taking into account the relations (5.1.2) and (2.5.3), the
{-th estimation of the gradient can be expressed through the (t-1)-th one:

k-1 '
gradegrade. vk @ (i1..i)*(.i1...ikDgL)) (5.1.3)

I1ye00,ir=0

The expression (5.1.3) allows to estimate the gradient in a gradual manner,
analyzing the structure from upper levels to the lower ones, with the possibility of
gradient estimation refinement not only over all t-th decomposition cells, but also
locally for each separate cell. If a cell corresponds to a terminal node, then further
calculations for this branch of the tree may be omitted. The algorithm based on the
use of (5.1.3) is given below.

Algorithm AS5 (T, g, grad). (The algorithm determines the brightness gradient
(grad) of a hypercubic fragment of a p-dimensional greyscale image, the fragment
coinciding with the cell d(i]...in) of positional caordinate g=.iJ...ip . The image is
represented by a truncated i -ary tree T.)

1. Set (+=h; grad=.0). (The gradient is calculated as a positional coordinate
with respect to the center of the cell with the number ij...i5.) If the node ij...ip is
terminal, then stop, else go to 2.

2. Set t=t+1; for each node of the t-th level with a coordinate go=.jI...jt, where
ir=j1, ..,ik=jn, perform:
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grad=grad ® (K™'(j1...j) * (20 ® &)

(gt describes the transition to the center of the cell ji...j»)

3. If no nodes are found at the ¢-th level or =m, then stop, else go to 2.

Let us now consider algorithms for the extraction of features based on the
analysis of the neighborhood of each pixel, or by taking into account adjacent
pixels. The computation of an object’s perimeter, the detection of different objects,
such as the crossing of lines, angles, and spots in an image, can be considered as
algorithms of this type. Provided the image is represented by a truncated tree, it is
convenient to base these algorithms on a tree traverse where each step is appraised
of those cells which neighbor the cell being considered (or, possibly, some
neighborhood of the cell being considered - this depends on the type of feature).

The algorithm given below is based on an “in width” tree traverse,i.e. from top
to bottom with a scanning at every level of those nodes which enable a converging
feature value approximation to be obtained at each step. Let us take as an example
the algorithm of a binary image perimeter computation (to be more exact - the
algorithm of a (p-1)-dimensional hypersurface area computation, where p is the
image dimension). Note, that if the “black” cell of the ¢-th decomposition has a
“white” neighbor, then their common side should be considered in the perimeter
computation. If the “black” cell of the ¢-th decomposition has a “gray” neighbor,
then their common side should also be taken into account in the perimeter
computation, but only in that part where the boundary between black and white
happens to be found at higher decompositions.

Algorithm A56 (7, L). (This algorithm determines the perimeter L of “black”
regions of the p-dimensional binary image of kP™ pixels represented by a 4 -ary
truncated tree 7. The external boundaries of the image are taken into
consideration).

1. If the root T is not “grey”, then (if the root is “black”, then (L = 2p; stop),
else (L =0; stop)), else (set (LI=0; t=1); go to 2).

2. For each pixel s corresponding to the “black” node of the ¢-th level perform
3.

3. For each pixel sz neighboring to sj, perform (if s2 is not “black”, then
I=L+k PP, if 53 is black and h<t, then I=L-k Py (b is the level number of the
pixel s2).

4. If at the t-th level there are no “grey” nodes or #=m, then stop, else (set
=t+1; goto 2).

After scanning each tree level, we obtain the perimeter estimation L; making
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more precise the preceding value Ly;. Depending on the “convexity” or
“concavity” of the figure forming an image, the estimation may be one with
redundancy or with deficiency.

Another estimation of the perimeter Ly can be obtained when considering
“grey” nodes as “black” ones in items 2 and 3 of the Algorithm AS56. This
estimation is shifted to the opposite side as compared to L;. The most realistic is the
average value of the aforementioned estimations, which can be calculated within
the frames of one and the same Algorithm A56.

400

300

250

Fig. 5.3 Convergence of an object perimeter estimation with an increase in the
decomposition number.

Figure 5.3 shows an examples of Ly, LY and (Lg+L{ )/ 2 perimeter estimations
for two binary images. Note, that contrary" to area estimations, perimeter
estimations are displaced relative to the true black/white border length of “black”
regions, if we consider an image before its discretization.
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5.2. Fast Template Matching

The task of image matching (registration) is a special case of the general problem of
object search and identification. This task appears at different stages of image
processing, for example, while estimation of an object location changes using
photos of one and the same area made at different moments; for finding the
coordinates of a given object in a photo, map, or drawing; in search of an image
containing a given pattern in the image data base, etc.

One widely used approach to solving problems of object search and
identification in an image is the method of comparing the image with a given
prototype [41, 68, 106]. The prototype would be a concrete pictorial presentation
of object being sought. For the matching task, it can be considered as an image
fragment which is to be found in the working image (possibly in a noisy, distorted
state with respect to the prototype image), which is also called the search area.
Several prototypes of one and the same object can exist; they may differ in detail,
shape, brightness, size, etc.

Let us consider first the simplest case where a square prototype image
(template) to be found is given and there exists its copy in the search area. They
are both of the same scale and are not rotated relative to each other. The task is to
find the place where the template coincides with the relevant part of the search
area.

The classical approach to solve such a matching problem is to determine the
similarity (difference) measure E of the template and the respective image area,
over which the template is being searched. A window W filled, by the template, is
sequentially shifted through all possible positions (i, j), I=j( M-k )s
1=<i( a4 ) in the search area S. K™ is the size of the search area, and k" is the
size of the window. The E(i, j) value is determined in each window position (i, j) in
S, and its maximum value indicates the most probable template position in the
search area. Mutual correlation is often used as a similarity measure; a method
known in the literature as correlation matching. The complexity of a correlation
matching algorithm is estimated as O(( kM-km+1 )2k2m ) operations.

The existing methods of computation volume reduction in solving image
matching problems are based on the following basic ideas: a reduction of operation
in computation of the similarity measure E(i, j), and object search planning
(moving of window in the search area). For the first group of matching techniques,
fast transforms to calculate cross-correlation [41, 148 ] are used as well as methods
of “sequential similarity evaluation” [107] in which a reduction of the calculation
volume is achieved due to a decrease in the number of pixel pairs of the
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“window-search area”. The drawback of this group of methods is the need to
calculate E(i, j) in all (i, j) positions of W. The time for solving the problem weakly
depends in this case on the character of the images to be registered.

At the same time, the size and form of monotone areas, and the degree of
detail of various regions of the search area must be taken into consideration in the
matching process. That is why search planning methods find, at first, those areas
of most probable object location, and then calculations are made which enable the
object to be localized accurately [106, 132, 1461.

The promising method using search planning is a sequential hierarchical
matching based on image and window representation by pyramidal structures {16,
56, 107, 135, 146]. Unlike other planning techniques, the object search is carried
out gradually, with progressive refinement, at every step, of the results obtained at
the previous steps. This approach allows to take into account the character of the
images to be registered and, at the same time, to use the existing methods of
correlation computation reduction. Let us consider it.

Let the search area S contain kMka pixels and the window W contain k"'xk™
pixels with m. Let us construct pyramidal-recursive structures for the search area
and the window and denote the image of the #-th level of the search area pyramid as
St={Sijt, Lj= 0,...,kt-1 } and the image of the /-th level of the window pyramid as
W1={Wijl, i,j=0,...,kl-1}. The search area S=s™ and the window W=W"" are on the
base of the respective pyramids. The pixel of the z-th level Sijt is determined
recurrently via the pixels of the (#+/ )-th level according to (2.5.4).

The matching process is developed as follows. At some initial level 7 of the
image (search area) pyramid, all possible locations of the #-th window pyramid
level are tested. If the similarity measure E o(i, j) between the window and the
search area for some window location (i, j) exceed a given threshold, the location is
declared to be “promising”, i.e. subject to further consideration at the next level.

Then at each following level =tg+1, f+2, ... the similarity measures E (i, j)
between the window and the image for those (i, j) locations of the window W’ (™M™
which are the projections of the promising locations of the (¢-1)-th level on the 7-th
level and also for locations adjacent to (i, j) are evaluated. If E (i, j )ZHt , where H
is a predetermined threshold for the #-th level, then the location (i, j) is declared to
be promising, i.e. subject to be specified at lower levels of the structure. The process
is terminated at the M-th level, where W™ locations are determined relative to S
with extremum values EM (i, 7).
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Algorithm AS57. (This algorithm determmes at each level r>tp of the search
area pyramid the matrix of promising locations P )

1, if the location (i,j) of WM promising

P'is determined as P‘( iLj)=
, otherwise

At the initial level 1o Ploi, j)=I for all ij = 0,...kK'0-1. H', t=to,...,M are
thresholds for determining promising window locations at each level.
1. Set t=tp.
2. For each pair (i, j) with Pt( i, j)=1 determine E (u, v), where u=i+a, V=+b; a,
b={0, +1, -1}.
3. Determine EX TR'= max{Et (u, v)}
u,v

4. If =M, then stop, else determine the matrix P 1:

1, if E(uv)H' or E= EXTR'
Pij)=
0, otherwise

where i=ku+[k/2], F=kv+[k/2], and [.] is an integer part of a number.

5.Sett=t+1. Go to 2.

By performing this algorithm, a sequential (by structure levels) refinement of
the window location in the search area is carried out.

A proper window localization may also be reached before considering the lower
levels on which the main bulk of the calculations take place. This allows significant
reduction of the matching time and in the case of limited resources for
implementing the algorithm to get at least approximate coordinates of the correct
window location.

Let us consider a model of the matching process based on a
pyramidal-recursive model of a p-dimensional Markov field (Section 3.2), The
main purpose of the following calculations is to obtain values of the thresholds H
and the criterion for algorithm termination. Let us begin by considering a
one-dimensional image (signal) and then generalize the results to the
two-dimensional case.

Let S=..,50,5I,... be a stationary Markov random process modelling a
one-dimensional signal (image of the lowest level). Suppose, that the signal to be
registered W=...,wp,wI,... is just the same process, but shifted relative to S in d
terms: w=si4. Then in order to define the unknown shift parameter d, it is
sufficient to find the location of the maximum value of the cross-correlation
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function of the S and W processes. Meanwhile, we consider the processes S, W as
unlimited and corresponding to the lowest m-th level of the structure.
t t
Let S~=...,50,s 1 ,... and W=, Wo ,w1 ,-.. be the processes corresponding to the
t-th level of the structure for S and W. Then
m—f -t
t o t-m ! t o t—m Ui m
sn==k 2 Sitnk; w1 =k 2 w; +Ilk; (5.2.1)
i=0 i=0
are also random values and their variance, as follows from (3.2.6), is given by:

D(sa')=D(wl )=D(a(1-)-2r( 1-1°))] &*( 1-r (5.2.2)

where o=k

Now, let us find the correlation coefficient r( snt, wzt). This value is the basis for
determining the cross-correlation function of the processes 5" and W' and is used to
estimate the promising locations at the 7-th level. According to the definition:

r(sn's wi') = (M(sa'wl)-M(su' M(w))1 (D(sn )D(wi)' 2.
Then, taking into account (5.2.1) and bearing in mind that ij‘=Sj+dm, we get:

r(sn', wi')=(D/a"D(sx')) 2 S e . (5.2.3)
i=1 j=1

As one might expect, the correlation coefficient of the random values snt, wzt
depends only upon the difference b=n-/ of their numbers and the value of the shift
searched d. Taking values #=0, 1, 2,..., we can obtain from (5.2.3) a set of samples
R(a, b, d) of the cross-correlation function of the s' and W processes with the
given shift d of the original processes S=S’" and W=Ww"". Performing summation in

(5.2.3) and using (5.2.2), we get the final expressions for R(a, b, d):

R(a, b, d)=((a-1ab-d1 )(1-*)-r'CH1 (3222 1ab-d1 ),
/ (a( 1-)-2r( 1)) (5.2.4a)
for the case of | ab-d|<a, and
R(a, b, d)=r' 12 [ (ol 16200 1) (5.2.4b)

for the case of | ab-d| za.

The graph of R(a, b, d) for a particular d can be plotted by setting 50 and
changing d. The curve obtained with r=0.95; k=2, b=0 and &=8 is given in Fig. 5.4.
In order to find the function R(a, b, d) for a particular d=dp, it should be shifted by
do to the right (dotted line in Fig. 5.4) and then the points corresponding to 0, a,
2aq,... arguments are marked; these will just be the curve searched.
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If it were possible in practice to find the exact cross-correlation function, then
only one point (or at least two points for d=ab+a/2) for which R(a, b, d) has a
maximum value should be chosen as a promising location. However, in a real
situation, the number of image (signal) pixels is finite and, therefore, for each bwe
obtain only an estimation of the cross-correlation function value which is itself
some random value. This means that the calculated values R*(a, b, d) may be both
larger or smaller than expected. Then, those locations should be chosen as being
promising for which R*(a, b, d) values are larger than some threshold H,
depending on the number of pixels in the one-dimensional window L to be
registered, and a predetermined probability ¢, so as not to omit the real promising
location.

Note, that with an a priori unknown shift value d, the minimum value of the
exact function R(a, b, d), for which the location b=bp is considered promising,
equals R(a, 0, a/2) (Fig. 5.4). If we find now the interval into which the estimation
R‘( a, 0, a/2) falls with the predetermined probability ¢, then its lower boundary H
will be just the threshold searched.

Let the window (process W™ contain kK™ pixels. Then at the ¢-th level, the
estimation R*(a, 0, a/2)=r*( snt, wzt) is obtained by using Lt=kt pixels. It is known
that if the values snt, wzt are distributed normally, then the distribution of the
statistics f=0.5In( 1+r*)/(1-r*) is normal with a mean ms=0.5(In(I+u )
(1-u )J+u/(Le1) and dispersion D= 1/(L+3), where u=R(a,0,a/2).

H=R(a,0,a/2)

R(a,0,d)

ok S

-16 -8

Fig. 5.4. Samples of cross correlation function of S and W processes at the 4-th
level (r=0.95)

e S -
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Fig. 5.5. Thresholds for determining promising locations of the window at different

pyramid levels.

In real situations, the snt distribution (as well as wlt) can be considered to be
normal in the general case only for sufficiently small ¢. This is also valid for small ¢
(large Ly in the case of the Markov model, due to the limit theorem for the
stationary Markov processes, as snt is a normalized sum of a rather large number of
summands. In this case, the threshold H is determined from the condition
f=myscVDy, where c is the number of standard deviations from the mathematical
expectation. For example, we have ¢=@(2)-®( x )}=0.977 for =2, where () is the
value of the normal distribution function.

Then for a given ¢ (and, therefore, for a given probability to find the real

promising location) we have the equation:
0.5In( 1+H)/(1-H) = 0.5(In( 1)/ ( 1-w )4 2(Le-1) -/ (Le-3)"
the solution of which enables to determination of the threshold H(c, ¢):

H(c,t)=(exp(A)-1)/(exp(A)+1), (5.2.5)
where A = In( 1)/ (144 )4/ (L-1)-c/(L+-3)""% 4 = R(a, b, d) and R(a, b, d) is
determined from (5.2.4).

In the case of additive noise in the process S, the expression for the
cross-correlation function changes in the following way. Let X=S+Z, where Z is the
random noise with limited dispersion, not correlated with the process S (and,
hence, with the process W). Let us find the correlations r( w,,t, xlt ), where X =St+Zt

is a process corresponding to the t-th level of the pyramidal-recursive structure for
x"=s"+z":
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M(wn(st +21)) — M(wh)M(si +21))

tot
r(wn,x1) = (D(wﬁ)D(sﬁ+z§))Vz

The assumption that the process Z is not correlated with the processes S and W
leads to the conclusion that Z'is not correlated with the processes S'and W'. Then:

M(whsi) — Mw)M(sh) ___n (Wn.s1)
@D + D(st)”?  VA+DGEDG)

t t
r(wn,x1) =

Thus, in the case of additive noise, the cross-correlation function at every
pyramid level (expression (5.2.4)) is normalized according to (5.2.6) depending on
the signal and noise dispersion ratio at this level. The expression for threshold
calculation (5.2.5) in this case remains unchanged, though the thresholds are
different due to a decrease in u.

Let us estimate the number of promising locations at each level with threshold
values being calculated in the case of absence of noise. The simplest way to do this
is to plot the threshold values for the predetermined probability ¢ and the
correlation coefficient r in the graphs of type cross-correlation functions for
different levels, and by verifying how many samples of this function are higher
than the threshold. It turns out that for =4, 5,... the number of promising locations
does not exceed two in the worst case and practically always equals one even for
¢=0.99. This means that no more than finding of the next k-ary digit in the value d
takes place during the matching process at lower levels of the structure.

However, it is precisely the number of promising locations at the lower levels
which determines the volume of calculations performed, as it is only at these levels
that the number of pixels L; in a window is large enough. Considering that the test
at each of the lower levels is carried out for three window locations (shifts -1, 0, +1
from the promising location), we find that the number of “window-signal” pairs
equals to:

N=3(K ™ 4 ™ 2
where the last item corresponds to the initial step of the algorithm (testing of all
locations of the first window level relative to the (M-m+1)-th level of the original
signal of ™M pixels). For an average algorithm of correlation template matching
No( Mo JK™. Then the number of operations of a window matching with the use
of the proposed algorithm is reduced by a factor of

-2mt+3(k-1)

Q=N2/Ni~ (K-k™)(k-1)/(3k+k ).

e
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For example, with M=10, k=2, m=7 we get Q=130.

The above relations may be easily generalized in the case of a separable
Markov field of arbitrary dimension p. In practice, the most interesting is the case
p=2, which is considered below. For the separable field cross-correlation function of
two-dimensional processes of the z-th level St, w equals the product of
one-dimensional functions: R2(a, b;, b2, d1, d2)=R(ai, b1, d1)R(az, b2, d2), where
d}, dz are shifts of W along absciss and ordinate axes in the original images S, and
R(a, b, d) is determined from (5.2.4).

The minimum value of the true cross-correlation function, with which by, b2
location is considered promising, is obtained with dj=d>=a/2 and equals u=
(R(a,0,a/2) )2. Let the matching image fragment contain K g™ pixels. Then at
the t-th level the estimation of is calculated from L=k21 pixels of the s' and W
processes and we obtain a threshold to define promising locations

Ha(c, t)=(exp(A)+1)/(exp(A)-1),
where A is determined as before from (5.2.5), but with
2t 2
Lk and u=(R(a, 0, al2))".

Fig. 5.5 shows the dependence of thresholds H2(¢c, t) on the level number ¢ for
=0; 2 and r=0.95. As well as in the one-dimensional case, the threshold value
quickly becomes such that, at worst, only four locations are promising at each level.
In this case, all the promising locations are in the vicinity of the maximum, and this
means that “multiplication” of the promising locations does not occur while
realizing the process at lower levels.

The computational expenditure of the algorithm depends on the average
number of promising locations at each level which for the two-dimensional case are
not higher than 2 for lower levels [16, 58 ]. Thus, the benefit in computational costs
as compared to the traditional algorithm of correlation matching is approximately

equal to:

0= (kZM-kzm)kzm/(18(k2m+k2('"'1\)+...)+k2(M'm+”k4)z

2M_k2m 2(M-2m+3)(k2_1))

~ (K WKE-1)/ (18K +k

For instance, with k=2 we get Q=( 4M—4m)/ ( 124+4M72m*3 ), then for M=9 (an image

of 512x512 pixels), and m=6 (a window of 64x64 pixels) Q=2500.

Two different images were used for experiments: a portrait and an aerial
photograph. Each was an image of 256x256 pixels with the number of gray scale
gradations equal to 256. From the image a window was randomly selected (a
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Fig. 5.6. Samples of a cross-correlation function (section along one coordinate) in
the vicinity of a promising location. Points are experimental results; dotted curves
are theoretical dependencies.

template to be registered) of nxn pixels (n64). Pyramidal structures were
constructed for a decomposition base &=2. Thresholds to define promising locations
were calculated according to (5.2.5) with ¢ =0.5.

Figure 5.6 shows cross correlation function values in the vicinity of the
promising location window in the search area (section along one coordinate) for
different levels of the structure. A shift for one sample in the graph relative to the
promising location corresponds to a shift for i samples (pixels) at the ¢-th
structure level. The dotted line shows the corresponding theoretical values of the
function obtained from (5.2.4.).

The average number of promising locations at all levels of the search area
pyramid except the two starting levels was not higher than 2, and for the majdrity
of tested locations at the lower levels of the structure, the number of promising
locations was equal to one.

Figure 5.7 shows the dependency of the time expenditure distribution
(computer processing time in seconds) for different levels in the matching process
(line 1), and the time expenditure dependence on the number of structure levels
taken into account in the matching process (line 2). It can be concluded from
Fig. 5.7 that obtaining the approximate coordinates of the true window location in
the search area requires insignificant computational expenditures at the upper
structure levels, while the main resources are spent for a precise window
positioning at the lowest level. Thus, search planning at the upper pyramid levels
allows to reduce significantly the total matching time. For a window size of 64x64
pixels, the time expenditure reduction factor as compared with the direct method of
correlation matching (taking into account the time required to build pyramids) is
2000-3000, which is better than the results described in [135, 146]. For 30 tested
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Fig. 5.7. Distribution of time expenditures at different levels of the structure (a);
total search time depending on the number of pyramid levels used in the matching

Fig. 5.8. Gradual refinement of the window (black frame) location in the search
area. Points in the figure indicate promising locations of the window
centre at the different pyramid levels (level numbers are near the points):
(a) window of 32x32 pixels; (b) window of 64x64 pixels.

window positions in the search area, the result of performing the program was
correct and window localization was true. The matching result is shown in Fig. §.8.

Independent, additive, and normally distributed noise is overlaid on the
search area in the other series of experiments. In this case, the thresholds to

determine promising locations were calculated according to (5.2.5) taking into
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account (5.2.6). It is interesting to note that in the case of threshold values
calculated without taking into account noise effects, correct window localization is
possible even with a signal/noise ratio of 1. This “resistance” to the effect of noise
can be explained by the fact that noise energy is strongly reduced at the upper
levels of the structure as a result of low-frequency filtration in the process of
pyramid assembling, and even relatively strong interference does not result in
incorrect approximate window localization at the upper levels of the structure. In
the case of a significant noise/signal ratio (D(Z)/D(S) about 10) thresholds
decrease, especially at lower levels and this results in a 1.5 - 2 time increase of the
average number of promising locations and the working time. of the algorithm.

5.3. Hierarchical Matching of
Arbitrary-Oriented Template

Let us consider how the advantages of a hierarchical approach can be used for
searching for a given template having a complex form, the location and orientation
of which, in the search area are not known. Among multiple practical applications of
this problem are indicating the predetermined object in the image, searching in
pictorial databases using a prototype, etc. The preliminary selection of promising
image areas, i.e. places in the search area similar to the given template, can be
evidently used to speed up the process. Let us describe an algorithm for solving this
problem based on the hierarchical correlation matching technique [21 ].

For the base, we shall use the above described matching algorithm for
searching for a rectangular window-template in an image (Section 5.2). It may be
formally considered as an algorithm assigned to find the maximum of the
cross-correlation function in the two-dimensional search area. Generalizing the
formalization for the case of an arbitrarily-oriented template, we come to the search
problem in the three-dimensional discrete space, with the orientation (rotation
angle) of the window with respect to the search area being used as the third
coordinate.

However, an algorithm of type A57 for matching a rectangular window may not
be directly used to search for a template having an arbitrary configuration. This is
connected with the fact that a rectangular window which scans the search area
looking for an object of complex form, covers not only the image of the template
searched, but also part of the background, which acts, in this case, as noise. In
order that the background found in the window together with the template does not
affect too much the finding of promising locations, the summands in the
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cross-correlation sum (corresponding to the cells of the z-th pyramid level) can be
normalized in a way that their effect upon the final value of the correlation factor is
proportional to the ratio of the area of the cell occupied by the template and the
total area of this cell.

Thus, the main modifications which must be introduced into Algorithm AS57
consist in normalizing the summands in the correlation sum and the introduction of
the third (angular) coordinate into the search area. Let us consider each of these
modifications in more detail.

Let us consider a template of arbitrary form — a prototype object — on some
neutral background. The first problem to be solved is to select an adequate size for
the window in which the given template should be placed in order to use this
window in the matching algorithm. Too small a window will result in loss
information and in a significant increase in the operation time of the algorithm due
to an increase in the total number of possible window locations in the search area.
Too large a window will result in the same effect due to the small ratio of the area
occupied by the template to the window area, which will lead to an increase in the
number of promising locations.

The optimal size of the window is calculated by coinciding the template
geometrical center of mass with the window center and by finding the minimum of
the template and the window difference function with variation of window size. The
difference function is preset as the sum of the number of pixels covered by the
window and belonging to the background and the number of template elements
outside the window. It follows that, with an accurate coincidence of the window and
the template (a case of rectangular image fragment search) the value of the
difference function is equal to zero.

To avoid any background effect in the matching process, we introduce weights
for all pixels in the window pyramid. The weights of the lowest level elements
equals 1 or 0 depending on whether they belong to the template or to background,
respectively. The weights of z-th level pixels are determined recurrently through
the weights of the t+/-th level:

kGi+1)—1  k(G+D)—1
ekt 3 2)
p=ki q=k;

(5.3.1)

where i,f=0, 1, ...,kt-I

It is easy to see that the determination of the weight of the #-th level is the
same as the determination of its brightness (5.2.2). Thus, the element weight
which is an independent characteristic may be calculated and treated quite
similarly as its brightness which is convenient for completing the pyramidal data
structure.
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Taking into consideration the pixel weight, the formula to calculate correlation
coefficients between the search area and the template at the respective level of the
pyramid may be written as:

a-1 a-1 _
s ™m0 3 3 G - M0l Ay
=0 j=

a—1 a-1 _ _ a=1 a-1 -t m— m—
I (S ST -MNVC T G- Y
=0 j=0 i=0 j=0

i

where SijM-t, Wijm-t are the values of the pixels at the (M-¢)-th and (m-t)-th levels of
the search area pyramids and the template, respectively; M and /S"H are their
average values; G" 'ti,- is the respective weight coefficient of the window pixel at the
(m-t)-th level, and a=k""",

The algorithm correction described allows to approximate the template even
more accurately while descending to the lower levels of the pyramid, thus avoiding
the background effect.

The next task is taking into account in the algorithm the possible difference in
the template orientation in the window and in the search area. To do this, it is
necessary to measure the cross correlation when the template is rotated through a
number of fixed angles respective to the search area pyramid. As was mentioned
above, this is equivalent to the introduction of an additional angular coordinate in
the search space. The simplest way of realising this idea is constructing a pyramid
which is three-dimensional at each level. This is constructed in a quite similar
manner to the two-dimensional one; however, this procedure requires additional
computer memory, which may be a significant obstacle in its practical realization.

As an alternative way of accounting for angular coordinates, direct rotation of
the current level of the window pyramid for a preset angle may be used in the
matching process. In this case, the time of algorithm implementation does not
increase significantly, as the upper levels on which the majority of the promising
locations are found are rotated sufficiently quickly. It is expedient to use the
conversion of the discrete coordinate system for rotation of the current pyramid
level. In this case, for the matrix NxN we have:

I=icos® -jsin® - (cos®-sin®-1)(N+1)/2+.5,
J=jsin® - j cos® - (sin®@-cos®-1)(N+1)/2+.5,

where I,J are the pixel coordinates of the rotated matrix; i,j are coordinates of
the pixels of the original matrix; © is the rotation angle.
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This conversion is characterized by the following rather useful property: four
pixels belonging to the 4pixel cross-like neighborhood of a given pixel will remain
in its 8-pixel square neighborhood after rotation.

It is evident that with k=2 at the first level of the template pyramid of size 2x2
the minimal possible rotation angle is 7/2. In descending to subsequent levels, the
minimal rotation angle decreases twice at each level. Thus, the number of possible
angles increases with the same rate as the template size, i.e. at the t-th level the
measurement of correlation is potentially realizable with 2! angles of template
orientation.

Note, that a formal scheme of Algorithm A57 may be used in the case of an
arbitrarily-oriented template search with the introduction of a supplementary
angular coordinate in the search space. However, the corresponding threshold
changes should be carried out for correct selection of promising locations.
Evidently, it is still possible to use formula (5.2.1) in the calculation of new
threshold values, but the value of the correlation coefficient of the search area and
the template should be adequately reconsidered.

As the changes in the template form and orientation independently influence
the change of the correlation measure, then their influence may be taken into
account by multiplying the expression (5.2.4) by the respective correcting factor.

Let us consider first the correction connected with the template form. As in the
previous Section, we shall first consider the one-dimensional Markov field. Let the
window contain £ pixels and consist of / sample of the recognized template and
k-1 samples of the background. Suppose that the background does not correlate
either with the template or with the signal in the search area. In this case, only
those window pixels which belong to the template and overlap the signal pixels in
the search area will provide a nonzero contribution to the correlation sum (when
the testing of some window location in the search area takes place).

If the template fills not less than half of the window length (and this is usually
the case for the absolute majority of cases with the described technique of window
size determination), then the number of pixels to be correlated as compared with
the case of searching the template, the length of which coincides with the length of
the window, decreases not more than by a factor of d=(1-2(1-1/ km)). Hence, the
correlation between the window and the search area decreases not more than for
this value at the upper level. The indicated coefficient tends to be equal to one
while descending to lower levels due to taking into account the weight coefficients.
As with each descent to the next level, the number of pixels increases & times, the
correlation coefficient at the t-th level can be calculated by the formula:
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R'=(1-2K(1-1/K")) R,

where R is the correlation at the ¢-th level calculated according to (5.2.4) when the
background is absent.

All the above considerations may be easily repeated for the two-dimensional
case. The respective formula for the correlation coefficient is the following:

R =(1-2k"(1-VG% ))*Ra, (5.3.2)

where Rz is the correlation coefficient obtained for a rectangular template and GD 00
is calculated in accordance with (5.3.1).

To estimate the influence of template rotation through some angle on the
correlation coefficient, let us consider how the correlation changes while rotating an
arbitrary window filled by a two-dimensional Markov field around its center. For
convenience, let us use a polar coordinate system. In this case, the location of any
point is described by its distance L from the center of the coordinates and the angle
with respect to the ordinate axis. For a nonseparable Markov field, the correlation
coefficient of a point displaced by a distance d from its original location will change
according to the formula r(d )=rod, where rg is the autocorrelation coefficient of the
Markov field. During rotation, the distance of any window point from the center of
rotation remains unchanged. Therefore, according to the cosines theorem, we
obtain d= L(2(1-cos)). In order to obtain the correlation coefficient between the
original template inscribed into the window LxL and the template rotated
respective to its mass center through an angle , it is necessary to average the
mentioned correlation over the entire template area. As the template size is close to
that of the window, the template may be approximated by a circle of radius L/2to
find the correlation coefficient.

r(a)=_4Lz_flssin(a/z) rgxsin(afz)d5= _13 f(?)-vr fovzr(z,lsin(a/z)l g1 dS =
JT. JT

. L2
2512 31 6inear) 2)-1)) Lisin(al 2)in(ro)? | =
o

~(ro™"™/2)( Lsin(a/ 2 )In(ro)-1+1)] (Lsin(a/ 2)In(ro))"

In our case L=k". Moreover, considering that the minimal rotation angle
equals 7/ 2" at the t-th level and introducing a new variable r=k"sin(7/ Pk ), we
conclude that to take into account window rotation relatively the search area, their
correlation coefficient should be multiplied by the factor k&:
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kr=2(r(zin(ro)-1)+1)/ (zin(ro) )% (5.3.3)

In the case of a circular template, this approximation can be used in the
threshold estimation according to (5.2.5).

If the template configuration is more complex, then a more careful threshold
estimation is required. The correction factor kg can be calculated more accurately
in this case. Integration in (5.3.3) is replaced by summarizing, and the correction
factor dependent upon the particular template form is calculated by the formula:

ddk 'k -1 j -t
2 Glg;tr(l);2+lj2—2lifcos(n2 ))/'

where: I= i-(K"+1)/2, I=j-(k"'+1)/ 2.

Thus, taking into consideration (5.3.2), we are able to finally write the
expression to estimate the correlation coefficient of a template of complex form
arbitrarily oriented with respect the search area fragment:

o* = Ro(1-2( 1-V GO )k kg (5.3.4)

Remember that to gbtain the threshold values, it is necessary to substitute this
correlation coefficient o into formula (5.2.5) instead of the o value.

H*y(c,t)
1.0 +
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0.2 +
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Fig. 5.9. The thresholds defining promising locations of an arbitrarily-oriented
template with the scanning window and template area ratio equal to x /4.
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Fig. 5.10. Promising locations and orientations of the template (a)
in the search area (b) at pyramid levels 2,...,5 (¢-f).
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Fig. 5.11. The time distribution of an arbitrarily-oriented template matching
process over pyramid levels for the cases:
(1) an unique asymmetrical template;

(2) a typical symmetric template.

As an example, thresholds to define promising locations, obtained according to
(5.3.4) and (5.2.5), with the ratio of window and template areas equal to /4 (the
case of a circle inscribed into a square window) are given in Fig. 5.9. As before,
these thresholds increase much more slowly than in the case of the standard
oriented rectangular template search. Thus, for example, even with c=0 more than
half the locations scanned at the first window level appear to be promising and
should be considered at the second level. Hence, in the case of arbitrarily-oriented
template matching, in practice it is reasonable to begin the search with the second
(4x4) level.

Experiments with the algorithm were performed for three greyscale images: an
air photograph, a sea bottom photo, and a portrait image. The search area size was
256x256 pixels, the window size was 64x64. Different templates occupied 70-809%,
of the window area.

The search began at the second level of the window pyramid. The correct
localization and rotation angle of the template with c=/ and ¢=2 was found in 809
and 95% of the cases, respectively. Both the total search time and its distribution
over the pyramid levels happens to be strongly dependent upon the template
symmetry and the search area structure. In the search of the unique (for a given
search area) templates with few axes of symmetry (for example, a plane in the
photo) the matching process was sufficiently quick, and most time resources were
spent in processing the second and the third levels (Fig. 5.10).
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In the case of a search involving a highly symmetrical template having also a
large number of similar prototypes in the search area image (a stone in the sea
bottom photo), the time needed for the program increased significantly with the
bulk of the processor time used for the lower levels. Figure 5.11 shows a typical
distribution of the processor time over the pyramid levels (with c=1I) for both the
cases indicated.

In conclusion, it should be noted that the technique described allows, when
necessary, to consider also other continuous template transformations (for
instance, a change in scale), there by approaching the fundamental problem of
identifying real objects by their images.

Chapter 6

APPLICATIONS OF
PYRAMIDAL-RECURSIVE
STRUCTURES AND
ALGORITHMS

This chapter deals with some applications of image processing algorithms and
image models based on pyramidal-recursive structures. The first section describes
the features of an image processing system which uses a pyramidal-recursive
representation as an internal data structure. The flow-chart of the computing
process in such a system is considered.

The second section describes an optical character recognition program, which
is based on an algorithm of hierarchical correlation template matching.

The third section presents an application of a pyramidal-recursive model of a
binary image for the processing of microscopic images of a mineral ore to forecast
the ore enrichment process during its milling at a mining concentration plant.

Section four describes alternatives of a specialized pyramidal-recursive
computer architecture for image processing. Some of these are pyramids of
processor elements realizing pyramidal-pipeline image processing; the other
processor PRESS has a ring architecture to enable it to process image fields of
arbitrary dimension.

Section five deals with the problem of expert systems for image analysis
development. Some parallels are presented between human visual perception and
image analysis with pyramidal structures.

The material of this chapter is drawn from [8, 10, 11, 14, 18, 58 ].
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6.1. Data Flow Organization in Image
Processing Systems

The models, methods and algorithms of image processing as described above can
be used as the basis for developing special systems for image data storage,
transmission and processing, with pyramidal-recursive structures being the
internal image representation technique. Some principles of their construction and
the particularities of their concomant data processing and decision making follow
from the properties of pyramidal-recursive image representation described in
Chapters 2-5. Let us summarize these: .

(1) Image data are represented in a computer memory by hierarchical
structures which are described recursively. The interrelations of structure elements
are regular and do not depend upon the contents of an input image. On the
contrary, the filling of structure elements with concrete information is determined
by input image data. The ways of structure filling for different image types are
given by the relations (2.5.4)-(2.5.6) which are formulated relative to the
elementary structure cell. Recursive application of these relations to the whole
structure enables the pyramidal-recursive representation of different type images
to be obtained.

(2) The manner of image data structuring predetermines the natural way of
breaking down the image processing stages: the problem being solved is divided
into subproblems, the interrelations between which are determined by the
interrelations between the pyramidal-recursive structure elements. In such a
decomposition, a structural unit relative to which a processing algorithm is
described is an elementary cell of a pyramidal-recursive structure or its separate
level. Solving the problem as a whole is realized by the application of an elementary
processing algorithm to the entire structure.

In level-by-level structuring, the energy of the initial image is distributed over
different structure levels as described by relations (3.2.14), (3.3.6)-(3.3.8). Thus,
it is possible to say that an elementary algorithm at each level uses a certain part of
the initial energy or input information. The volume of this part for images
satisfying the pyramidal-recursive models proposed in Sections 3.2 and 3.3. may be
predicted beforehand.

(3) The algorithms process the structure in accordance with a top-down
strategy which corresponds to the scheme of the recursive data processing [6, 13 ]
(Fig. 6.1a). They analyze data stored at the current structure level so as to refine at
each level the approximate results obtained after the processing of preceding levels.

The seauence of eraduallv refined results is obtained while an algorithm
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accomplishing at each level. The accuracy of current results depends upon the
dispersion of brightness at corresponding structure level. The inherent accuracy of
level-by-level processing for images satisfying the pyramidal-recursive model is
determined according to relations (4.3.6), (4.4.2) and the algorithms of Sections
5.1-5.3.

(4) The elements of a pyramidal-recursive structure does not describe
individual pixels of the input image but, rather, groups of pixels having given
properties. Therefore, the data volume in the case of pyramidal-recursive
representation depends not on the volume of input data (the number of the initial
pixels N), but on the real complexity of the analyzed image expressed through the
number M of nonredundant structure nodes, with M being much less than N. The
results presented in Chapter 4 enable an estimation of the number of nonredundant
nodes in a truncated pyramidal-recursive structure and the volume of data
associated with each node sufficient to describe the input image with a given
accuracy. This facilitates the estimation of the data volume subject to be processed
at each structure level.

Summarizing the principles presented above, one can say that the resuits of
Chapters 2-§ enable to determine in what way a pyramidal-recursive structure can
be constructed and filled by data, what data volume is to be processed at eath stage
of the level-by-level processing, what fraction of the input information (energy) will
be used, and at which point can results of a given accuracy can be achieved.

The utilization of pyramidal-recursive structures opens various possibilities
relating to computational process control in digital image processing. Thus, if an
image is processed not by a single, but by n sequential algorithms, then it is
possible to organize an algorithmic pipeline through which the data to be processed
are passed level by level (Fig. 6.1b).

In this case, the result of processing the first level by the first algorithm
RES(1)=A1(I(1)), is used, first, for refining by the same algorithm AI:

RES\|(2)=A1(RES1(1),1(2)),

and, second, for the processing by algorithm A2 to obtain the first approximation of
the image processing result by two algorithms A7, and A2:

RES2(1)=A2(RES|(1))=A2(I(1)).
In the general case, after the (f+n)-th step, the n-th algorithm provides the

t-th approximation of the image processing result by all n algorithms to a depth of ¢
levels:
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Fig. 6.1. Flow-chart of progressive data processing with a gradual refinement of
results: (a) by a single algorithm;
(b) by a set of algorithms; (c) by a set of processors.
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RESn(t)=An(RESn(t-1), RESn-1(1)).

If the result obtained after the processing of ¢ levels by all n algorithms is
acceptable, then no further work is needed. In the case of the parallel performance
of all n algorithms (for example, by n parallel processors), n+t steps will be
required to achieve this result, while a satisfactory realization of the goal using a
serial one-processor computer requires nt steps.

In both cases, a significant reduction in the time required for decision making
(n(m-1)+t steps) can be achieved compared with the alternative procedure when
every subsequent algorithm has to accomplish a complete processing of the
structure, and only then is control transferred to the next algorithm. It should be
taken into consideration that those steps which correspond to the processing of
lower levels of the structure need the greatest time, because it is during this stage
that the greatest data volume is processed. The pipeline of algorithms allows to
execute these steps (if the decision at this moment has not yet made) at the end of
the procedure.

If several parallel processors are available, it is possible to organize another
pipeline for the processing of an image represented by a pyramidal-recursive
structure. Each processes a certain structure level by a sequence of different
algorithms (Fig. 6.1b). In this case, the z-th approximation of the image processing
result is received after t+n steps using a chain of n algorithms:

RESn(t)=An(RESn-I(t), RESn(t-I)).

The difference between this and the previous alternative is that the processor
power should be proportional to the average data volume treated at the
corresponding level. The second alternative might be more preferable than the first
in problem-oriented image processing systems, as it enables pipeline processing of
both an individual image and a sequence of images even by a single algorithm (the
basis of parallel processing is the level-by-level data structuring, and not the
presence of several sequential processing algorithms).

There exist various possibilities of flexible control of computations when the
processing of a sequence, or a set, of images is required due to various alternatives
in the sequencing of a level-by-level processing of corresponding pyramids by one
or several algorithms. While processing a set of images, the t-th level of each image
can be processed just after the ¢-th level of the previously processed image. Thus,
the first approximation of the result can be obtained for the whole set of images in a
given time, then the second approximation for all the images can be interpreted,
and so on. When a certain accuracy in the result for each image is realized, for
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instance, it is determined that certain images do not correspond to the pattern
being searched for, all levels of their structures which have not yet been analyzed
can be excluded from further consideration and the pipeline then continues to
refine results for a smaller number of (remaining) images. Thus, it is possible to
organize the change in the accuracy of the result for a single image (while
processing images one after another and making a decision for each of them) to the
rate at which the approximate result for a set of images is received (in “parallel”
processing of all images level after level and making decisions at each step for all
images under consideration).

“The choice of the processing strategy can be of great importance, for instance,
in the analysis of multispectral images or stereo pairs, and motion analysis and
control over sequences of images. It should be noted that in many cases it is
necessary to process not only brightness data, but also dispersion, texture
characteristics, etc. In such cases the image analyzed is represented by several
pyramidal-recursive structures, each of which corresponds to its own
characteristics. The time required for the analysis of such images may be
significantly reduced by the choice of an appropriate strategy of decision making in
different combinations of scanning a set of structures “in depth” (by levels) and
“in width” (by a set of structures).

Thus, image representation with pyramidal-recursive structures provides some
new possibilities in image processing systems such as enlarging the set of tasks
which can be solved, a gradual refinement of intermediate results and decisions,
and the realization of various decision making strategies in accomplishing one or
several algorithms.

6.2. Optical Character Recognition

The task of automated typewritten text reading using optical character recognition
is, at present, one of the popular problems both in research [24, 25, 93] and
commercial [75, 126 ] applications. There are two main approaches to solving this
problem: the development of “taught” and “intellectual” programs.

The operation principle of algorithms of the former type is the successive
comparison of each character scanned by the program with all templates (character
prototypes) stored in the computer memory. When the template identical (or
similar) to the character concerned is found, the character is identified as being
recognized and the respective code is recorded in the memory. The “teaching” of a
recognition program consists of introducing a new set of character prototypes (new
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fonts).

When intellectual programs are operating, it is not the specific character which
is compared with a set of templates, but some distinctive features of their abstract
generalizations which are obtained as a result of character image transformations.

Both approaches to character identification have their advantages and
drawbacks. “Taught” programs can be adjusted in practice by the user to any font
of any alphabet and are not very sensitive to document quality, although they not
can usually recognize more than one font at a given time and need to be taught any
new font. On the contrary, “intellectual” programs need not be taught any new
type of text to be read and can process documents using variable fonts. However,
difficulties in identification can appear with documents of average or poor quality.
Besides, it is usually not possible to teach these programs new alphabets. In
practice, both recognition techniques are often used together.

This section presents some ideas of image processing with pyramidal
structures implemented into the algorithm of typewritten character recognition.
The operation is based on the successive comparison of every character to be
recognized with prototype images of the alphabet characters.

Let s;j and w;; be pixels of the character recognized and a template from a set of
prototypes, respectively. Comparison of these images is made in the rectangular
window Ixn, so that =0,1,...,I-1; 0,1,...,n-1. The normalized deviation of the
character image and the template in the simplest case is calculated using the

formula:
-1 n-—1

d(swi= (3

i=0 j=0
Let d(s,w(i)) be the deviation of the character identified from the i-th
character (or from the i-th template) of the alphabet; then the condition that the
character identified is the a-th character of the alphabet can be written as:

[ (sij — wij) | )/ nl (6.2.1)

d(s,w(a))=min {d(s,w(i))} and d(s,m(a)) < d*,

i
where d* is the maximum deviation (threshold) with which the decision concerning
character recognition can be made. :

A primary parameter effecting recognition quality and speed is the size of the
rectangular window in which templates are stored (this dimension is related to the
scanner resolution with which images are entered). Characters become faintly
distinguishable with too rough a resolution, and the algorithm operation time
significantly increases with high resolution. A way out of this situation which
provides acceptable recognition quality at a sufficient rate is the use of hierarchical

template matching. Comparison of characters in this case is done progressively
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using their pyramids in a level-by-level manner from top to bottom (see Section
5.3).

Some alphabet templates which are non-promising for subsequent comparison
can be refused at each pyramid level during a top-down comparison process. Only a
few templates having the greatest similarity to the character identified “reach” the
lowest level. At the same time, the calculation time of the deviation decreases by a
factor & if the deviation is estimated at the (t-1)-th pyramid level instead of the
t-th level. As a result, the algorithm operation time decreases several times without
any practical decrease of recognition quality.

An important problem impressing the algorithm operation efficiency is the
selection of the threshold d‘; optimum value at each #-th level of the pyramid. The
theory described in Section 5.2 fails to help in this case, as it is not possible for
images of character type to be adequately described by a Markov field with a
sufficiently high autocorrelation coefficient. Let us consider another approach to
this problem.

The image of the character identified, s, can be conditionally represented as
the sum of the ideal template w and some random additional value s. This value is
attributable to the difference between any real character image and the same
character prototype image.

In turn, the value s can be decomposed into two independent summands: that
connected with defects and specific attributes of the typing device - §; and that
connected with distortions arising in the image of a character entered into the
computer memory (noise of the scanner, discreteness of the image received, etc.) -
a: s=f+a An example of the first summand could, for instance, result from a
change of a character image solidness or some character “striking”. A typical
example of the second summand would arise from a specific “fringe” along the
character boundaries.

It should be noted that the summands § and « at upper levels of the pyramid
have a principally different behavior. As the value 8 is connected with statistically
stable correlations of a large number of pixels, it is practically constant at upper
levels. The value «, on the contrary, is connected with random independent
variations of pixels of the original character image. Hence, contributions of these
variations to are mutually compensated at upper pyramid levels and, as a result,
decreases rather quickly with pyramid level growth. Thus, it turns out that in most
cases we can assume s = ﬂt = ﬂm (¢t is the level number; and m is the quantity of
levels in the character and template pyramids) for text recognition with a typical
scanner resolution (150 dots/inch or more). From this, an important conclusion
can be drawn: the threshold d‘t can be taken to be a constant for all pyramid levels:
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* *
dered.

To understand how to choose the particular value of d‘ and to represent more
clearly the essence of the problems which arise, let us consider the simplest case:
identification of an alphabet consisting of only two characters. Call these A and B.
According to the assumption made, an image of the character identified can be

decomposed into three components:

si(A) = wi(A) + Bij + aij;
sij(B) = wij( B) + Bij + ajj. (6.2.2)

Taking into account (6.2.2), and condition a;j < Bij which is true for many real
cases, (6.2.1) can be rewritten as:

d(s(A),W(A)) = 1fd(A)| ; (6.2.3a)
d(s(B),w(A)) = |fu{A,B) +fd(B)! , (6.2.35)

where fg(A) and f4(B) is the noise of typing device for characters A and B, and
Jw(A,B) is the difference of characters A and B.

It should be noted that in (6.2.3) the value fu{A,B) is not dependent on the
particular character recognized, and hence is a constant for a given pair of
characters.

Let us introduce two more assumptions. Let random values f#(Q) be uniformly
distributed in the interval [f ¢(Q),f ¢(Q)]and, in addition, f ¢(A) =f d(B) =1 4.
Neither of these suppositions are of a principal character, however, they enable
simple analytical expressions for d‘ to be obtained. There are two principally
different alternatives as illustrated in Figs. 6.2 and 6.3.

If the condition f,{A,B) = 2f‘d (Condition 1) is satisfied, then densities
corresponding to possible deviations of the characters A and B are completely
separated (Fig. 6.2). Conformably, with any threshold satisfying the condition

fa<d < fl (AB)| -fa (6.2.4)

the probability of a correct identification is Pp=I/, the probability of false
identification is Pfa5e=0, and the probability of identification reject is Pp=0.

Another situation takes place if fw(A,B) < 2f‘d (Condition 2). Densities
corresponding to the characters A and B partially overlap in this case and correct
identification of these characters is principally impossible (Fig. 6.3). It is
reasonable to take the threshold d‘ within the ranges:

fa<d < \f(AB) -fq
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A case of error-free identification with the maximum amount of rejects
& * .
(“distrustful” recognizer) corresponds to d &~ |fw(A,B)! - f 4. The respective
probabilities are:

Po=((2f a-f(AB))If 4)°; Po= 1-Ppr; Praise=0;

Obligatory character identification with the maximum number of errors
* *
(“trustful” recognizer) corresponds to d ~f 4. In this case:

Pratse=(2f a-f( AB)If 4)212; Pom 1-Pratse; Por=0;

When the threshold d‘ fluctuates within the ranges given above, the respective
probabilities Ppr, Pfaise and Py change continually within the respective interval.
Having defined a certain Pfylse value (the remaining probabilities being determined
ambiguously) depending on the particular recognition task, the appropriate
threshold d* can be found.

P

0 fw(A,B) |

Fig. 6.2. Density of distributions of f4(4) and fu(4,B) + fa(B)
values for the case of fw(A,B) 2f 4

Generalization of the inference for the case of an arbitrary volume alphabet
and for a more realistic distribution of the f4(Q) value does not qualitatively
change the conclusions drawn. The density of the fy(Q) distribution is close to a
Gaussian, than to a uniform, distribution. Parameters of distributions for various
characters are significantly different; however, as before, there exists a varying
interval of a’t, within the limits of which a reasonable compromise between the
number of characters erroneously recognized and those rejected can be reached.

A program for typewritten text recognition has been developed based on the
ideas described. Its specific features are a sufficient tolerance to the quality of the

TR
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documents to be entered into the computer and the ability to work with
comparatively low scanner resolution (150 dots/inch). The latter enables working
in a “conveyor” mode even with IBM PC AT and IBM PC XT class computers by
recording 10-20 files with images of text pages at a time and subsequently their
automatic recognition.

A wide range of thresholds d‘ was experimentally investigated during the
study of the program operation. In practice, no identification error (Pfai5e<0.005)
was observed for a mean quality text with d‘=0.08 and a significant number of
rejects (Ppr=0.3). Moreover, with an increase in d the number of errors gradually
increased while rejections decreased. With d*=0.2, Prase reached 0.09 while Py,
dropped to 0.001. Further increase of the threshold had practically no effect upon
the change in probabilities mentioned above. These probabilities can be observed
for a wide class of character pairs for which Condition 2 is satisfied.

As the investigation of a set of template characters shows, the number of
character pairs with a dissimilarity less than a certain given f.w limit set increases
from 1 at f‘»=0.08 to 184 at f‘M.Z. Figure 6.4 shows a distribution graph for the
mentioned number of characters M depending on f*w.

An average template dissimilarity from an image of a real character equals
0.17. As can be seen from Fig. 6.4, there are about 100 pairs of characters flaving a
dissimilarity less than this value. Condition 2 is fulfilled for these. Thus, the
predictions of the theory are proved.

While program operation in the mode of character recognition entered with a
resolution of 150 dots/inch, about 109, of the processor time was used for reading
and unpacking each following line of the text, about 309, for the construction of a
pyramidal structure and about 609, for the progressive character recognition by the
pyramid levels.

Fig. 6.3. Density of distributions of fd(A) and fw{A,B) + f4(B)
values for the case of fu( A,B) 2f 4
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Fig. 6.4. Amount of character pairs M having a dissimilarity
*
less than a threshold f , for different thresholds.

Figure 6.5 shows the typical distribution of the number of characters tested at
each pyramid level in the identification process of Cyrillic alphabet characters. As
can be easily seen, in average, only 3 characters out of 90 (the standard set on a
Russian typewriter) could be considered at the lowest level of the pyramid.
Document quality varied from poor to good, the speed of recognition with an IBM

0 % t } .
0 1 2 3 4

Fig. 6.5. Typical distribution of the number of characters tested (N) at each
pyramid level ¢.

APPLICATIONS OF PYRAMIDAL-RECURSIVE STRUCTURES AND ALGORITHMS 1556

PC AT (12 Mhz) computer changing from 5 to 10 characters per second and the
percentage of correctly identified characters improved from 90 to 99, respectively.

6.3. Modelling of Ore Milling

Digital image processing is widely used now in mineralogy; in particular, for the
analysis of the micro-structural composition of ores at mining concentration plants
for forecasting the enrichment ability of the raw materials. Microscopic images of
flat cuts of ore specimens with grains (regions) of a useful product included in the
mineral mass are used for this purpose. Various parameters of grain textures and
structures are measured on these images. Using these data, models of the
separation of ore phases (i.e. separation of the useful product from dead rock) in
the process of mineral mass crushing are developed.

An important role in ore quality forecasting is played by the so-called ore
milling-opening diagram which is a three-dimensional graph showing the
percentage of ore particles containing the preset proportions of the useful product in
particles of a fixed size. It can be briefly described as follows.

First, ore is crushed into large pieces of size significantly larger than that of
the useful product grains (magnetite for iron-ores). In this case, the curve of the
density distribution of the volume fraction of magnetite in ore pieces is
approximately Gaussian. At the subsequent milling stages, the diameter of ore
particles decrease, and the distribution of the magnetite volume fraction changes
(its dispersion increases, particles consisting of pure rock quartz or pure magnetite
appear). At least, the distribution changes to a discrete one with the magnetite
fraction content in a single particle equalling 0 or 100%. The quicker the valuable
mineral can be separated from the ore (i.e. the less is the milling rate required) the
higher is the quality of the ore.

Enrichment strategies depend on the ore quality. If the milling-opening
diagram is known, then some technological parameters of milling plants and
separation strategies can be chosen to obtain a-high quality of concentrate with
optimal energy expenditures for mineral mass milling. Milling-opening diagrams
are often developed experimentally during the physical milling of ore samples and
by taking particle samples of different grades from the dispersion mass. However, it
is also essential to be able to construct computer-based models describing
milling-opening diagrams, which enable various technologies of milling and
separation to be considered beforehand, by analyzing digital images of ore cuts.

The application of pyramidal-recursive models of binary images developed in
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Sections 3.3 and 4.4 makes possible the simulation of some peculiarities of the
milling process and the construction of a milling-opening diagram based on the
analysis of microscopic images of ore specimens.

Actually, progressive image decomposition into cells of different order, when
the construction of a pyramidal-recursive structure takes place, resembles the
stepwise ore crushing process. In this case, cells of the first decomposition order
correspond to particles of the first grade class, cells of the second partition — to
particles of the second class, etc. (usually average particle sizes in different grade
classes are in a constant ratio, for example 1:2:4:8:16...).

Each grade class is subdivided into a number of mineral value classes
depending on the volume fraction of the useful product. In the structure
representing the binary image, the characteristic of the mineral value class is the
node color: black nodes correspond to the useful product, white nodes to dead rock,
and grey nodes to aggregations of ore and magnetite which have not yet been
separated. If the node color does not have three gradations, but its brightness is
determined more accurately (for instance, as for greyscale images), then it is
possible to imitate separation into a larger number of mineral value classes.
However, investigation of four classes is sufficient in the first approximation (the
color of each mode is characterized by two bits in this case).

There are some results in integral geometry and stereology [115, 118 ] which
enable linear and surface estimations to be transformed into volume estimations. In
particular, the volume fraction of the useful product in each grade class and mineral
value class is determined by the corresponding surface fraction estimation for a cell
of the respective level in the pyramidal-recursive structure.

To estimate the milling-opening diagram for four mineral value classes, it is
sufficient to find at each level of the pyramidal-recursive structure the number of
cells of four different types: black (B); grey, not less than 50%, of which is black on
the image of lowest level (Gy); grey, less than 50% of which is black (G2); and
white (W). These areas can be found directly for each image analyzed or in the
process of the structure construction by the summation of the black areas of cells of
lower levels.

Let us use the two-layer model of a binary image to simulate the ore
milling-opening process. Magnetite is often included in a quartz mass as grains, for
which reason microscopic images of ore cuts often have a “spot” structure.

Suppose that sections of magnetite grains have a circular shape. Then, the
parameter tg of the two-layer model (see Section 3.3) is related to the sizes and the
amount of grains in an image. The sum of the perimeters of grains is approximately
equal
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N
L=m Y D;= ND,,
i=1
where N is the number of grains, and Dy their average diameter. The total area of
the grains can be estimated as
S= g: Si= M‘,
i=1 4
where K is a square of the average grain diameter. Then by estimating the
parameter fp for the image, it is possible 7o estimate the average diameter of the
magnetite grains, and its dispersion. These are important characteristics of ore
quality.

The same parameter allow to estimate the diagram of ore milling-opening for
four mineral value classes of particles. Let us assign particles consisting of pure
magnetite to the first mineral value class (denote B). Their volume fraction in the
t-th grade class is determined by the square of a “black” cell of the z-th
decomposition. This can be estimated using (3.3.6):

0, Kty

B(t)= y (6.3.1)
S(1-k%) 1210,

where S is the area of black regions of the image. Aggregations of magnetite and
quartz are assigned to the second and the third classes (G; and Ga, respectively).

Their summary volume fraction in the t-th grade class is determined by the number
of “grey” cells of the ¢-th level:

1, <1y
G(1)=Gi(1)+Go(t) = (6.3.2)
k-2tg(t) = k'(t-to), tZt().

The fourth mineral value class (W) into which dead ore falls is determined,
taking into account that B(t) + G(t) + Ga(t) + W(t) =1, as follows:

1, Kfo
W(t)= - (6.3.3)
(1-S)(1-k 79 ), t=10.

It follows from relations (6.3.1) and (6.3.3) that at each decomposition level
the volume fraction of magnetite in a class G(t) = G(t) + G2(t) remains constant
and equals S. The ratio of volume fractions of classes Gi(t) and G2(t) equals
S/(1-S). therefore:
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S, 1o
Gi(1) = (6.3.4)
Sk 440,

1-S, <to
Gat) = (6.3.5)
(1-S)k~ %) =1,

The relations (6.3.1) - (6.3.5) enable ore opening to be forecasted at different
stages of milling (Fig. 6.6). They also allow to predict more accurately the best
moment for halting the milling process, which, in turn, would result in a decrease
in energy consumption for ore crushing.

Some existing technologies of fraction separation assume that different mineral
value classes are extracted from a disperse mass upon completion of the crushing
process. At the same time, there should be possibilities to choose some ore phases,
particles of which need not be crushed further, at each of the milling stages during
the separation process. The above model helps to describe such a technique. For
example, if the first mineral value class corresponding to pure magnetite is
extracted at each stage of milling from a mineral mass, and residuals are directed
into dead rock, then volume fractions of different mineral value classes are
described by the following relations:

0, <t

b(t)=
S(k-Dk™ ) g,

g1(t)=G1(t); g201)=G2(t); (6.3.6)
0, <t

Got)=

(1-S)(k-Dk" 79 g,

The volume fraction of ore being milled compared to the original mass
permanently decreases in this case and equals kt°'t+1 (£1p), which provides a sharp
decrease in energy expenditure for mass crushing to obtain particles of grade class

£S5 fn
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Fig. 6.6. Milling-opening diagram of a two-phase ore, based on the two-layer
model of a binary image (#p=3, $=0.67)

x - mineral value class; y - particle grade class; z - percentage of particles
(fraction volume).

6.4. Special Devices for Imagé Processing

Recent progress in computer hardware development makes it possible to create
special processors for operating with practically any data structure, or realizing any
algorithmic structure. Pyramidal-recursive structures are very suitable for
implementation in high-power special devices with parallel data processing. Work
in this direction began in the early a 70’s [134, 138, 139] and were developed




160 IMAGE REPRESENTATION AND PROCESSING

simultaneously with the theoretical study of pyramidal data structures and their
processing algorithms [3, 37, 61, 88,911]. ‘

Two features of pyramidal structures - the possibility of simultaneous
operations with many pixels, and regular hierarchical interrelations of elements -
predetermine a natural way for the construction of special hardware. This reflects
the pyramid data structure in the computer architecture. In this case, each
structure node is supposed to be brought into correspondence with the so-called
processor element (not a very complex device which accomplishes elementary
arithmetic or logic operations with data). As is shown in [1401}, this approach
provides the best time characteristics for performing a large range of various
operations with images as compared with some other approaches to the construction
of special compauters for the processing of two-dimensional images.

There exist already many different proposals and realizations of this type of
device [30, 37, 42, 43, 116, 133, 136, 144]. The main idea being the construction
of these devices is the parallel processing of pixels at each individual pyramid level
and successive level processing. The data flow from bottom to top, or from top to
bottom, through the pyramid of processor elements. An additional opportunity for
computational process paralleling is in operating with several images at the same
time due to the organization of a data processing pipeline (see Section 6.1), i.e.
activation of all processing elements at each moment and operating with different
images at different levels. This is a distinctive feature of pyramidal computational
structures which distinguish it from matrix processors or homogeneous
computational media, where processing of only one image element normally takes
place [20, 47, 61, 133 1.

This section considers some features of the construction of pyramidal
processors and a variant of specialized computer architecture for the processing of
pyramidal-recursive data structures. The presentation is based on [11, 14].

Important differences in pyramidal computers, as suggested by different
authors, are the quantity of processor elements (PE) and the “topology” of their
interconnections (it is usually supposed that all PE’s of the same level are
identical). The main types of interconnections are determined by the existence or
absence of lines of communication between processors of the same level, and the
existence or absence of two or several PE’s lines “overlays” at the lower level (see
Fig. 6.7).

Pyramidal structures with overlays are aimed at facilitating the work with the
neighborhoods of pixels. “Horizontal” interconnections of PE’s serve the same
purpose, therefore a combination of overlay and horizontal links of PE’s of the
same level (Fig. 6.7g) is not usually used. Interconnections of the type shown in
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Fig. 6.7a provide access to neighboring pixels only through the upper levels.

One other important difference of the proposed pyramidal processors is the
direction of data flow. If the data flow in the pyramid goes in one direction only,
from bottom to top or from top to bottom, then the organization of pipeline
processing of an image set is possible with the pipeline capacity being proportional
to the number of pyramid levels and inversely proportional to the operation time at
each level. Horizontal data flow among processor elements of the same level do not
prevent pipeline operation if the access time to data at this level is the same as that
in the “vertical” direction. If, on the contrary, data flow is allowed to be both
ascending and descending, then a continuous pipeline not can be organized without
additional hardware requirements.

It should be noted that an analogous problem arises in the processing of an
image by a pyramid having a descending data flow, if the filling of the PE’s
structure by data (i.e. the process of the initial image representation by a pyramidal
structure) is organized as an ascending data flow. Usnually in this case, pipelining is
used only in performing individual operations (algorithms) of image processing
[147].

The advantages of pyramid-like computer systems for image processing are the
simplicity of the architecture of individual processor elements, the regularity of the
interconnections of PE’s, and the pipeline processing of a set of images. At the
same time, such computers have some disadvantages.

First, a computer having a pyramidal architecture cannot take advantage of
those algorithms which work with truncated trees: the complexity of such
algorithms depends, as a rule, not upon the number of nodes in a full tree, but only
upon the number of terminal nodes, which are usually one order less. The
complexity of algorithms in pyramidal processors is usually determined by the
number of levels with PEs, i.e. it depends on the number of nodes in a full tree.
This means that a great number of PEs corresponding to redundant nodes execute
unnecessary operations or simply wait. The rigidity of interconnections in the
structure does not allow unattached PEs to be used for any other operations, and
the levels of the structure are forced to work synchronously in the mode “one
command - multiple data”.

Second, only pyramidal machines for two-dimensional image processing are
being developed. In the three- and multi- dimensional case the number of both PEs
and their interconnections sharply increases, which complicates the engineering
and technological realization of the pyramidal processor concept. Certainly, one PE
is able to process not just a single tree node but several nodes at a time, leading to a
tree of a less height [3]; however, in this case, no proposals are known which are
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directed to developing machines for the processing of multidimensional fields, or to
processing fields of different dimensions.

This motivate us to sketch here some considerations on special computer
architecture which is able to process images (information fields) of an arbitrary
dimension represented by truncated pyramidal-recursive data structures. We call
this PRESS [11, 14]. An important difference of PRESS from processors having a
pyramidal structure is its possibility to operate with a varying number of PEs
irrespective of their malfunctions, the absence of PE’s downtimes, and the
processing of multidimensional images. This is attained due dynamic organization
of the necessary PE’s connections based on the use of positional coordinates of the
structure nodes instead of using of fixed PEs connections.

PRESS is based on the representation of the image processed as a truncated
pyramidal-recursive structure. For each operation with an image, this structure can
be considered to consist of a number of elementary structure cells processed in
serial by levels and in parallel inside each level; all operations with the elementary
structure cells being of the same type. Therefore, each PE processes at any moment
a single elementary cell of the structure. A principle distinction is that elementary
cells are processed in the required order, i.e. an important feature is the
opportunity to reorder the input data flow. For this, the array of elements of the
pyramidal-recursive structure is recorded in a special manner into a high-speed
ring dataway, where data then circulates permanently (Fig. 6.8).

This ring, dataway is the memory of PRESS. It can be considered to be a set of
memory cells which quickly rotate relative to unmovable PEs. The data array to be
processed is opened by some specially marked memory cell. Data ordering in the
dataway is determined by the positional coordinates of the pyramidal structure
nodes. The contents of memory cells are brightness values and optionally some
other characteristics of tree nodes. The total amount of memory cells reserved for
these data is equal (or proportional) to the number of nodes in a full (not
truncated) structure; however, the memory is filled in each particular case with

A A A4

Fig. 6.7. Different types of PE interconnections in pyramidal processors.
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Fig. 6.8. Flow-chart of the PRESS processor: 1 - input preprocessor,
2 - output postprocessor, 3 - command memory,

4 - interpreter, 5 - user interface, Y1, Y2 - flags.

only those data which correspond to the nodes of the truncated tree. Thus, the
number of each cell in the circulating array is in a one-to-one correspondence with
the positional coordinate of the respective structure node, and access to the data in
the memory of PRESS is realized through the calculation of positional coordinates
of tree nodes.

A separate PE at any moment is considered to be “connected” with one of the
nodes of the structure which it processes. A PE can read-out the brightness value
from the circulating array and record into it the results of calculations at those
moments when the respective memory cells are passing it during the following data
circulation. The PE functions are:

- operations with positional coordinates to determine the addresses of
brightness values for subsequent processing and to access them in the dataway
according to the calculated positional coordinates;

- operations of reading and writing data from (io) the dataway;

- operations with data from the dataway: for example, calculation of the new
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brightness value of the node to be processed.

PRESS operates in the following way. The input preprocessor represents the
input image by a truncated pyramidal-recursive structure and fill with data the
array circulating in the memory. At the same time, the controller translates the
user task of performing the next operation with an image into one, or several,
commands describing the necessary manipulations with an elementary structure
cell. The command memory accessible for all PEs.

During the first cycle of the data array in the dataway, PEs (suppose there are
n of them) “connect” themselves with the first n non-empty array cells. (Let us
consider that the number of PEs is less than the quantity of nodes in the tree —
this is a typical situation.) After that, the cells connected with PEs are marked as
occupied to prevent the processing of one node of the structure by two PEs
simultaneously. PEs readout the first command from the command memory.
Depending on the command, each PE can need additional data (for instance, the
values of pixels which neighbor that being processed) which it must readout from
the dataway having determined previously their numbers. The PEs which then
have all the necessary data (this is equivalent to permission for work start-up)
begin to work.

The initial starting moment is initiated by the PE corresponding to the tree
root. Having performed the required operation, it records a new value into the array
cell and marks it as already processed (the array circulates in the dataway during
this operation - its rotation period is not of great importance, though it is desirable
that it does not exceed the time of operation). Then, the PE which has processed
the root finds the first non-empty cell not yet being processed, changes its state
indicator and begins to operate with it.

As soon as the first cell (i.e. the zero level of the tree) is processed, it becomes
possible for PEs which correspond to the nodes of the first tree level to begin
processing their cells (the change of state of the first cell indicator is a signal for
them that all necessary data are available). They work in parallel, and having
finished their operations they go to processing the following non-processed and
non-empty cells, similarly to the PE which processed the root. Further
level-by-level processing of the tree is developed in a similar way: each PE begins
to operate depending on data availability; when a given operation is completed, the
PEs turn their attention to tree nodes not yet processed. (These features make
PRESS related to a dynamic architecture computer {101 ]).

During the work of the PEs, the output postprocessor permanently reads out
the cells having been processed and displays the current state of the circulating
array as an image on the screen. Thus, a gradual refinement of the resulting image
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takes place at the output.

The distribution strategy of a non-allocated PE over the data can be rather
flexible. For example, a PE can go not to the following non-processed array cell,
but to the next command from the command memory. If a sufficiently large number
of PEs is available, then a part of the unallocated PE can be directed to the
processing of another image (or images) in the pipeline regime. This can be done
by recording new data set into free cells of dataway.

Note, that there is a major possibility to use PRESS also as a matrix processor
or in the mode of paraliel processing of individual image fragments. This depends
on the method of data ordering in the dataway. For this, the input preprocessor
must perform also some functions of the controller and to be able to record data
structures of different types into the dataway, for instance, two- or
multi-dimensional arrays ordered in different ways. It can be said that the problem
orientation of the whole processor is achieved by the selection of the data structure
in the dataway in accordance with the problem solved.

Thus, the main complexity in PRESS is transferred from the organization of
the physical interconnections of PEs to the organization of the data stream in the
dataway. In practice, the data structure in the dataway performs the role of a
control device for all PEs which defines the sequence of data elements, pr'ocessor
element connections, and the paralleling of operations. For the rest, PEs work
independently of each other and asynchronously in time.

A PE in PRESS must have some specific features to carry out the required data
access and data manipulations successfully. First of all, this requires an ability to
operate with positional coordinates. Such actions are required not only to calculate
the addresses of data elements in the dataway, but also for operation with
positional coordinates describing the characteristics of vector information fields,
i.e. color or multispectral images. Hence, each PE must consist of two elementary
processors: one for the calculation of access addresses and the other for operations
with field characteristics. Both processors must “be able” to work with positional
coordinates of a discrete space cell of arbitrary dimension p. In particular, with
p=1, or while processing a scalar field (greyscale or binary image), they must
process ordinary scalar values.

Note, that the usual arithmetical processor can be adapted for work with
positional coordinates by limited modifications. For instance, performing the
addition operation i @ j is described by the relation (2.4.6). With &=2 (or utilizing
the binary notation) it follows that the addition of 2° -ary digits of positional
coordinates is carried out according to standard rules of binary addition with only
the following difference: the binary carry after addition of the following binary
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digits is added not to the neighboring left bit, but to the p-th bit on the left hand (in
particular, with p~1 we get an ordinary scalar addition). Hence, to convert a
standard summator into a “positional” one for dimension p it is sufficient to
introduce an extra carry chain or to use the existing chain, but to divide the
addition into p cycles. In the latter case, the time of operation will increase.

Another modification is required to realize multiplication of positional
coordinates. As follows from (2.4.7), this operation can be realized by logic
multiplication and the calculation of the number of units in each p bits of the result.
This calculation is nonstandard for ordinary processors, and requires extra
resources for its realization. The remaining operations with positional coordinates
can be realized using the standard set of microcommands of arithmetic-logic
devices operating in binary notation. As in the particular case p=I, digits of
positional coordinates coincide with ordinary bits, and special processors for
ordinary numeric operations are not required.

6.5. On Expert Systems Simulating Human
Visual Perception

The recent development of expert systems for image analysis (ESIA) [18, 77, 108 ]
may be considered to be a natural outcome of research in the area of digital image
processing and analysis. The class of the problems dealt with in this direction has
increased for more than three decades: starting from digital image coding up to
problems of image analysis, interpretation and image databases. Despite the fact
that a lot of positive results have been obtained in these areas, such tasks as
invariant object recognition, image understanding, retrieving image data by a
visual pattern query, still cause serious difficulties. It seems that the utilization of
achievements in the artificial intelligence area, as well as recent results in human
perception research will make the development of ESIA more grounded. The
present section considers some principles of human visual perception in relation to
pyramidal-recursive structures and their implementation in expert systems for
analyzing visual data. It is based on the works [8, 10, 18 ].

The first distinctive feature of an expert system for image analysis lies in two
subsystems, each of which works with its own type of information. Visual data are
treated in a way which is different from that used in the processing of descriptive
data and knowledge. This feature stems from the incorporation of two types of
expertise: one from the problem area and the other from image processing. While in
traditional expert systems (ES), direct input data usually consists of features of
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objects or situations which have been formalized, in ESIA we deal with raw image
data, where it is necessary first to extract features, combine them into sensible
groups and measure different parameters, in order to obtain initial material for
semantic analysis in the frame of the particular problem area. Thus, in ESIA
knowledge of both problem area specialists and image processing specialists are
inherent.

Another distinctive feature of ESIA, which is also due to the two types of
information presented in the system, is based on the following aspect. Along with
the traditional logical inference providing generation and verification of hypotheses
by means of symbolic data manipulations, it is necessary to involve in ESIA another
mechanism for visual data. In contrast to logical inference which is presumably
mainly sequential, these needs to be a parallel mechanism which is used for image
processing, pattern matching and associative search.

The peculiarities of the two main parts of ESIA are summarized in Fig. 6.9.
Looking at the functions which the two parts perform one can notice an analogy
with some peculiarities of human visual perception. In dealing with two aspects of
human mental activity: the left (logical verbal) cerebral hemisphere and the right
(spatial pattern) cerebral hemisphere, one should take into account that they are
both activated when the brain is processing, but that they realize different
functions.

Logical verbal reasoning is responsible for the analysis of cause-sequence
relations, providing the construction of internally consistent world models and
extracting from the total amount of possible relations between an object and
phenomena only several spatial ones. Pattern reasoning gives us the gestalt
perception of the world picture, which is necessary to make complete contact with
reality. Thus the difference between the hemisphere functions and the types of
reasoning consists in what the dominating technique of information processing is.
As can be seen, the situation is rather similar to the two parts of ESIA.
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1. Two types of information
FORMALIZED NONFORMALIZED

numerical data, picture, pictograms,
symbolic data (rules,

predicates,...)

visual patterns

2. Two types of information processing
SEQUENTIAL PARATLLEL

symbolic processing, image processing,

logic inference,... pattern matching,

associative search,...

3. Two types of expertise
LOGIC-VERBAL SPATIAL-PATTERN

problem-area expertise image processing expertise
(knowledge formalization, (preprocessing, segmentation,
implementation,...) feature extraction,...)

Fig. 6.9. Symbolic and iconic mechanisms in expert system for image analysis.

In the traditional ES, where a process of reasoning by a specialist in some
problem area is simulated, an inference engine which corresponds to the logical
verbal type of human mental activity plays the most important role. The second
type of mental process is usually absent. Such a situation satisfies, in many cases,
the conventional ES requirements. This happens because input data to search ES
are already formalized (numbers, predicates, rules, feature parameters), and point
inherently to the corresponding analysis mechanism — logic inference. In contrast
to the traditional ES, in ESIA input data are given as spatial patterns, from which
formalized data are to be extracted.

Thus, in ESIA, where it is often necessary to analyze situations similar to
those that occurred before (for instance, estimation of the changes that took place
in some region, object identification based on associativity and a search process
based on visual pattern query), lack of a perception mechanism based on
spatial-pattern reasoning significantly reduces the possibilities of the system. This
points to the necessity for developing techniques for the modeling of simultaneous
visual pattern processing, where basic elements are represented by blocks
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(fragments, symbols) of a picture rather than a pixel.

The important object arises of constructing an expert system for image
analysis which would support the two types of expertise (problem area and image
processing) and simulate the left and right cerebral hemisphere mechanisms of
perception. It is worth noting that a problem area expertise, presumably based on
formalized knowledge, is more adequate for the logical formal mechanism. Concept
hierarchy - the description of hierarchical relations between abstract objects - could
be chosen as a model in this case.

As for image processing expertise, this is based to a large extent on the right
hemisphere mechanism which is oriented to work with spatial patterns. That is, we
deal with the visual hierarchy of instances. If so, then one of the main tasks of the
ESIA is to find a correspondence between elements of the two hierarchies [97,
108 ]. The implementation of this process is, in essence the situation of human
perception with the left and right hemisphere mechanisms working together.

Biomedical and physiological investigations indicate that before the image
passes from the retina to the brain it undergoes an important change. Low spatial
frequencies (or, equivalently, low resolution image) go to the brain first, then
medium frequencies, and so on. Thus, several images of varying resolution (direct
analog of an image pyramid) follow into the brain, this process being repeated
every time we shift our glance, i.e. when a new retinal image appears which differs
from the preceding one.

Two basic hypotheses exist which account for this phenomenon [40, 52, 100].
According to one of these, the receptive field of the retina enlarges quickly after one
shifts one’s glance, and this is followed by a step-by-step decrease, which is
equivalent to the progressive increase in the clarity of the image transmitting into
the brain. By another hypothesis, there exists several physically different
photosensitive rasters in the retina, some of which are rough, and the others more
fine. Initially, the image is perceived by the coarse raster (a set of perceptive
elements), then by intermediate ones and so on, to the finest raster. As a result, a
stage-by-stage refinement of the observed pattern in the visual cortex occurs.

If the duration of one’s glance is too short, the brain can perceive only the
roughest copies of the scene observed. The volume of these data is significantly less
than that received for the whole image. To process these data takes much less time
than that which is necessary to analyze the image in detail. It is this data that
carries the most important information on a general situation. Fine points, and
details of an observed picture are important later after the first rough copy has
already been formed. Then each detail at which one desires to look, and to which
our glance is shifted, is also analyzed in the same stage-by-stage manner.
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Thus the information is analyzed according to the coarse-fine principle, where
the approximate result at the initial stages of the process is gradually refined
subsequently. In this case, the channel of data transference between the retina and
the memory is not only used efficiently, but smoothly over the defects of the retinal
image, thus increasing the system’s noise immunity.

Other research shows that rather deterministic visual perception violations
take place when certain areas of the brain are affected. For instance, when visual
areas of the left cerebral hemisphere are damaged, the ability to estimate visual
pattern features, to extract valuable features and to find pattern classification
principles are affected to a great extent. Damage in the corresponding areas of the
right cerebral hemisphere lead to violations of the perception of specific features
(especially parallel feature perception), memorizing of individual features and
shapes with unknown names and spatial relation estimation processes [90, 130].

This provides a clue which is expedient to the implementation of the functions
of both hemispheres. The right hemisphere mechanism should perform the location
of specific individual object features, compare them with already known ones (the
prototypes), analyze spatial relations of the features and objects, and remove noise
in the image. Left hemisphere functions include feature significance classification,
construction of conceptual hierarchy, formulation of rules to recognize an object
and remembering of visual symbolic descriptions (Fig. 6.10).

Patients suffering damages to the visual areas of the right and left hemispheres

have quite different strategies of object recognition when recognition time is rather
short. For example, patients with damage in the right occipital lobe have a
recognition strategy consisting in logical inference deductions which are based on
the recognition (that often happens to be incorrect due to short observation period
and the right hemisphere damage) of some image features. The conclusions are
generic and lack concreteness. They are gradually refined using the results of new
deductions (Fig. 6.11a).

Patients with damage in the left occipital lobe perceive mainly by way of
accumulating different image features without taking into account their
significance. Recognition takes place only after most of the features have been
extracted, correctly recognized and summarized (Fig. 6.11b).

It should be stressed that for healthy persons with two cerebral hemispheres
working in parallel, the recognition process runs almost 50 times faster (average
recognition time is several miliseconds) than for patients with impairment of either
hemisphere.

It is interesting to note the different principles for making decisions, when
recognizing an object, by persons with left and right orientation [90, 143 1. For the
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former, the hierarchy of features (their relative importance) plays the main role in

LEFT HEMISPHERE RIGHT HEMISPHERE

Destruction of image into
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Noise elimination, pattern

extraction

Recognition of general Recognition of specific
features features

Pattern similarity Pattern specify analysis

analysis

Estimation of feature

hierarchy

Analysis and fixing of Analysis and fixing of spatial
temporal and causal relations

relations

Learning - obtaining of Remembering of integral
generalized features patterns

and notions

Memory for generalized Long-term memory for patterns
features, short-term and their elements with

visual memory assotiative access

Fig. 6.10. Basic functions of the human visual cortex.
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— classes — — ——

Fig. 6.11. Recognition strategies for left (a) and right (b) oriented persons.

the recognition process. A feature (or detail) - say, “a wheel” - for such patients,
leads to the conclusion “this is a kind of transport”. This means that the relation
between the feature “a wheel” and the class “transport” has maximum weight in
spite of the possibility of relating the feature with objects from other classes (for
instance, the object could be a mill). Recognition of the next feature - “an arc” -
(within the context of “transport”) allows the choice of a subclass with the highest
weight and so on, down to the recognition of a specific object.

In contrast to this, among right oriented persons “a wheel” feature causes
associations with many concrete patterns where similar wheels have been observed
(a car, a watch, a motorcycle, a ship, etc.). The next feature (randomly taken and
regardless of importance and relation with the previous one) diminishes the set of
possible solutions and so on up to the situation when the final set of features
defines the unique object.

Thus, in contrast to the way the left hemisphere makes decisions based on the
highest weight criterion, we discover in the right hemisphere a radically different
criterion of decision making that may be called an absence-of-alternatives principle:
once the accumulated amount of information narrows the choice to a single
alternative, and the decision is accepted.

Based on the data given above and presented in the literature [10, 84, 105,
150, 151 ] a functional schema of a system simulating the human perception process
could be suggested (Fig. 6.12). The left formal-logical part of the system is to be
filled with domain knowledge constituting conceptual hierarchy. In the right spatial
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pattern part, accumulation of visual data and feature identification takes place,
providing a hierarchy of patterns. Goal definition and context should play an
important role in the system. It is difficult to guide both image analysis and
synthesis when there is no distinct task to be done. (For example, in dreaming,
when only the right hemisphere is working, contradictory and logically inconsistent
pictures are retrieved from the visual memory in the form of dreams, though they
are accepted as rather natural when sleeping.) To exclude such self-generation in
the right part of the system, the left part should specify a set of goals or tasks to
work with visual data, which will define the logic of “system attention” switching.

Recognition strategies in ESIA should be based, on the one hand, on the
accumulation of specific features and, on the other hand, on forecasting the type of
object to be recognized using its dominant features. To prevent a “combinatorial
explosion”, both strategies should be utilized first of all in parallel and, second,
hierarchically, using hierarchical structuring of input image data. For this purpose,
the right and left subsystems may continually exchange decisions made thus
permanently refining the scope of the alternatives under consideration. In reality,
the implementation of such a strategy due to its complexity may be effective only in
developed systems working with a large volume of knowledge and a significant
amount of patterns. l

The inherent characteristic of the hierarchy of perception processes
predetermines the natural choice of regular pyramidal structures as the base for
ESIA development. A significant reduction in computer resources can be achieved
when performing operations not on input images, but on corresponding
pyramidal-recursive structures in a top-down strategy. It is worth noting that these
structures operate with an image block rather than a pixel, thus approaching the
right hemisphere type of information processing.

An important aspect of pyramidal-recursive structures is the possibility of
specifying a correspondence between a visual hierarchy, which is proved by the
structure construction mechanism itself, and a conceptual hierarchy, which is the
bases for selecting strategies in ESIA. For instance, once a pyramid is constructed
on the basis of an aerial photo image of a city, we could locate “large” objects such
as roads and buildings on the upper pyramid levels where images with low
resolution are situated. These correspond to classes of objects (Fig. 6.11b).
Therefore the location of a crosswalk could be achieved on the lower levels (where
fine details of objects appear) only in those places previously defined as road
objects. This prevents the need for a large number of segmentation reducing
solutions to be checked by a system for the whole picture. Noise influence is
reduced as well.
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Fig. 6.12. Structure of the system modeling some functions of human visual

On the other hand, the search for a particular object is performed in a
particular context, thus indirectly utilizing specialist knowledge of a problem area.
To summarize, image processing in ESIA based on pyramidal-recursive structures
rather than a picture as an array of pixels, allows considering the analysis process
as a process of establishing a correspondence between two hierarchies.

The hypothetical system shown in Fig. 6.13 includes a pyramidal-recursive
processor for image operations and a knowledge-based processor working with a
conceptual hierarchy. An image is loaded in parallel into the pyramid of processing
elements (PE) and the description of the current goal activates the corresponding
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Fig. 6.13. Function schema of the ESIA prototype.

[

erarchy in the knowledge-based processor.

In the first stage, image data flow moves in the upward direction through the
pyramid. Processing elements extract the individual features of the image on
different hierarchy levels. At the same time, the feature identification process is
initiated (starting from upper levels) taking into account the activated formalized
knowledge represented in a conceptual hierarchy. On the basis of a set of identified
features, as well as individual ones, hypotheses about the presence of an object in
the image are generated. yAssociative retrieval of visual patterns (templates) from
the image database constitutes this process. After tpat a downward pyramid process
starts. At this stage, a fast technique for template location is used to verify whether
the predicted objects (features) are really present in the picture. This concludes the
primitive identification process. The described procedure, considered as a model of
the perception process in the ESIA prototype, should be repeated at different
generalization levels.
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